This research aims to study the optical characteristics of semiconductor quantum dots (QDs) composed of CdTe and CdTe/CdSe core-shell structures. It utilizes the refluxed method to synthesize these nanoscale particles and aims to comprehend the growth process by monitoring their optical properties over varied periods of time and pH 12. Specifically, the optical evolution of these QDs is evaluated using photoluminescence (PL) and ultraviolet (UV) spectroscopy. For CdTe QDs, a consistent absorbance and peak intensity increase were observed across the spectrum over time. Conversely, CdTe/CdSe QDs displayed distinctive absorbance and peak intensity variations. These disparities might stem from irregularities in forming selenium (Se) layers around CdTe QDs during growth stages, which could potentially induce quenching in the emission spectrum. The optical examinations unveiled a discernible redshift towards higher wavelength values as the reaction progressed. This spectral shift was coupled with an enlargement in QDs size and a decrease in the energy gap. Using PL and UV analysis techniques enabled a comprehensive study of the optical attributes of the CdTe and CdTe/CdSe QD systems. Our findings underscored the influence of growth conditions and shell materials on the optical properties of QDs. The observed changes in absorbance, peak intensity, wavelength values, QDs size, and energy gap with increasing reaction time provided valuable insights into the growth dynamics of these QD structures.
Purpose: The research aims to build an integrated knowledge framework for the basic research topic. The spirituality of the workplace is through access to the most important scientific proposals on these topics. In management thought framing, the knowledge within them in a serious attempt is to provide the appropriate answers about the intellectual dilemma of research by diagnosing the nature of the relationship with the influential elements and its historical development . Methodology: The study is relied on the analytical survey method. The research sample targeted (88) managers in the center of the Iraqi Ministry of Health exclusively from the researched senior leaders (general manager, assistant general manager, and head of department),
... Show MoreSilver selenide telluride Semiconducting (Ag2Se0.8Te0.2) thin films were by thermal evaporation at RT with thickness350 nm at annealing temperatures (300, 348, 398, and 448) °K for 1 hour on glass substrates .using X-ray diffraction, the structural characteristics were calculated as a function of annealing temperatures with no preferential orientation along any plane. Atomic force microscopy (AFM) and X-ray techniques are used to analyze the Ag2SeTe thin films' physical makeup and properties. AFM techniques were used to analyze the surface morphology of the Ag2SeTe films, and the results showed that the values for average diameter, surface roughness, and grain size mutation increased with annealing temperature (116.36-171.02) nm The transm
... Show MoreSilver selenide telluride Semiconducting (Ag2Se0.8Te0.2) thin films were by thermal evaporation at RT with thickness350 nm at annealing temperatures (300, 348, 398, and 448) °K for 1 hour on glass substrates .using X-ray diffraction, the structural characteristics were calculated as a function of annealing temperatures with no preferential orientation along any plane. Atomic force microscopy (AFM) and X-ray techniques are used to analyze the Ag2SeTe thin films' physical makeup and properties. AFM techniques were used to analyze the surface morphology of the Ag2SeTe films, and the results showed that the values for average diameter, surface roughness, and grain size mutation increased with annealing temperature (116.36-171.02) nm The transm
... Show MoreThe change in the optical band gap and optical activation energy have been investigated for pure Poly (vinyl alcohol)and Poly (vinyl alcohol) doped with Aluminum sulphate to proper films from their optical absorption spectra. The absorption spectra were measured in the wave range from (200-700) nm at temperature range (25-140) 0C. The optical band gap (Eg) for allowed direct transition decrease with increase the concentration of Aluminum sulphate. The optical activation energy for allowed direct transition band gap was evaluated using Urbach- edges method. It was found that ?E increases with increasing the concentration of Al2 (SO4)3 and decreases when temperature increases.
The research aims to demonstrate the impact of TDABC as a strategic technology compatible with the rapid developments and changes in the contemporary business environment) on pricing decisions. As TDABC provides a new philosophy in the process of allocating indirect costs through time directives of resources and activities to the goal of cost, identifying unused energy and associated costs, which provides the management of economic units with financial and non-financial information that helps them in the complex and dangerous decision-making process. Of pricing decisions. To achieve better pricing decisions in light of the endeavor to maintain customers in a highly competitive environment and a variety of alternatives, the resear
... Show MoreObjective: To measure the effect of the pharmacist-led medication reconciliation service before hospital discharge on preventing potential medication errors. Methods: This behavioral interventional study took place in a public teaching hospital in Iraq between December 2022 and January 2023. It included inpatients who were taking four or more medications upon discharge from the internal medicine ward and the cardiac care unit. The researcher provided the patients with a medication reconciliation form and reconciliation form (including medication regimen and pharmacist instructions) before discharging them home. Any discrepancies between the patients’ understanding and the actual medication recommendations prescribed by the physici
... Show MoreWe have investigated the photoemission and electronic properties at the PTCDI molecules interface on TiO2 and ZnO semiconductor by means of charge transition. A simple donor acceptor scenario used to calculate the rate for electron transfer of delocalized electronics in a non-degenerately TiO2 and ZnO electrodes to redox localized acceptors in an electrolytic. The dependent of electronic transition rate on the potential at contact of PTCDI with TiO2 and ZnO semiconductors, it has been discussion using TiO2 and ZnO electrodes in aqueous solutions. The charge transfer rate is determining by the overlapping electronic coupling to the TiO2 and ZnO electrodes, the transition energy, potential and polarity media within the theoretical scenario of
... Show More