This research aims to study the optical characteristics of semiconductor quantum dots (QDs) composed of CdTe and CdTe/CdSe core-shell structures. It utilizes the refluxed method to synthesize these nanoscale particles and aims to comprehend the growth process by monitoring their optical properties over varied periods of time and pH 12. Specifically, the optical evolution of these QDs is evaluated using photoluminescence (PL) and ultraviolet (UV) spectroscopy. For CdTe QDs, a consistent absorbance and peak intensity increase were observed across the spectrum over time. Conversely, CdTe/CdSe QDs displayed distinctive absorbance and peak intensity variations. These disparities might stem from irregularities in forming selenium (Se) layers around CdTe QDs during growth stages, which could potentially induce quenching in the emission spectrum. The optical examinations unveiled a discernible redshift towards higher wavelength values as the reaction progressed. This spectral shift was coupled with an enlargement in QDs size and a decrease in the energy gap. Using PL and UV analysis techniques enabled a comprehensive study of the optical attributes of the CdTe and CdTe/CdSe QD systems. Our findings underscored the influence of growth conditions and shell materials on the optical properties of QDs. The observed changes in absorbance, peak intensity, wavelength values, QDs size, and energy gap with increasing reaction time provided valuable insights into the growth dynamics of these QD structures.
Melanoidins can be diagnosed using the Fourier transform infrared (FTIR) technique. UV/Vis is an effective tool for both qualitative and quantitative analysis of chemical components in melanoidin polymers. The structural and vibrational features of melanoidin synthesized from D-glucose and D-fructose are identical, according to FTIR spectra, with the only difference being the intensity of bands. Using FTIR spectra, the skeleton of melanoidin is divided into seven major regions. The existence of the C=C, C=N, and C=O groups in all melanoidins formed from fructose and glucose with ammonia is confirmed by the areas ranging from 1600 to 1690 cm-1, and the band is largely evident as a broad shoulder. Both melan
... Show MoreThe recent emergence of sophisticated Large Language Models (LLMs) such as GPT-4, Bard, and Bing has revolutionized the domain of scientific inquiry, particularly in the realm of large pre-trained vision-language models. This pivotal transformation is driving new frontiers in various fields, including image processing and digital media verification. In the heart of this evolution, our research focuses on the rapidly growing area of image authenticity verification, a field gaining immense relevance in the digital era. The study is specifically geared towards addressing the emerging challenge of distinguishing between authentic images and deep fakes – a task that has become critically important in a world increasingly reliant on digital med
... Show MoreNumeral recognition is considered an essential preliminary step for optical character recognition, document understanding, and others. Although several handwritten numeral recognition algorithms have been proposed so far, achieving adequate recognition accuracy and execution time remain challenging to date. In particular, recognition accuracy depends on the features extraction mechanism. As such, a fast and robust numeral recognition method is essential, which meets the desired accuracy by extracting the features efficiently while maintaining fast implementation time. Furthermore, to date most of the existing studies are focused on evaluating their methods based on clean environments, thus limiting understanding of their potential a
... Show MoreIn this paper, a new method of selection variables is presented to select some essential variables from large datasets. The new model is a modified version of the Elastic Net model. The modified Elastic Net variable selection model has been summarized in an algorithm. It is applied for Leukemia dataset that has 3051 variables (genes) and 72 samples. In reality, working with this kind of dataset is not accessible due to its large size. The modified model is compared to some standard variable selection methods. Perfect classification is achieved by applying the modified Elastic Net model because it has the best performance. All the calculations that have been done for this paper are in
A new data for Fusion power density has been obtained for T-3He and T-T fusion reactions, power density is a substantial term in the researches related to the fusion energy generation and ignition calculations of magnetic confined systems. In the current work, thermal nuclear reactivities, power densities of a fusion reactors and the ignition condition inquiry are achieved by using a new and accurate formula of cross section, the maximum values of fusion power density for T-3He and TT reaction are 1.1×107 W/m3 at T=700 KeV and 4.7×106 W/m3 at T=500 KeV respectively, While Zeff suggested to be 1.44 for the two reactions. Bremsstrahlung radiation has also been determined to reaching self- sustaining reactors, Bremsstrahlung values are 4.5×
... Show MoreThis article aims to provide a bibliometric analysis of intellectual capital research published in the Scopus database from 1956 to 2020 to trace the development of scientific activities that can pave the way for future studies by shedding light on the gaps in the field. The analysis focuses on 638 intellectual capital-related papers published in the Scopus database over 60 years, drawing upon a bibliometric analysis using VOSviewer. This paper highlights the mainstream of the current research in the intellectual capital field, based on the Scopus database, by presenting a detailed bibliometric analysis of the trend and development of intellectual capital research in the past six decades, including journals, authors, countries, inst
... Show MoreAn intelligent software defined network (ISDN) based on an intelligent controller can manage and control the network in a remarkable way. In this article, a methodology is proposed to estimate the packet flow at the sensing plane in the software defined network-Internet of Things based on a partial recurrent spike neural network (PRSNN) congestion controller, to predict the next step ahead of packet flow and thus, reduce the congestion that may occur. That is, the proposed model (spike ISDN-IoT) is enhanced with a congestion controller. This controller works as a proactive controller in the proposed model. In addition, we propose another intelligent clustering controller based on an artificial neural network, which operates as a reactive co
... Show More