This research aims to study the optical characteristics of semiconductor quantum dots (QDs) composed of CdTe and CdTe/CdSe core-shell structures. It utilizes the refluxed method to synthesize these nanoscale particles and aims to comprehend the growth process by monitoring their optical properties over varied periods of time and pH 12. Specifically, the optical evolution of these QDs is evaluated using photoluminescence (PL) and ultraviolet (UV) spectroscopy. For CdTe QDs, a consistent absorbance and peak intensity increase were observed across the spectrum over time. Conversely, CdTe/CdSe QDs displayed distinctive absorbance and peak intensity variations. These disparities might stem from irregularities in forming selenium (Se) layers around CdTe QDs during growth stages, which could potentially induce quenching in the emission spectrum. The optical examinations unveiled a discernible redshift towards higher wavelength values as the reaction progressed. This spectral shift was coupled with an enlargement in QDs size and a decrease in the energy gap. Using PL and UV analysis techniques enabled a comprehensive study of the optical attributes of the CdTe and CdTe/CdSe QD systems. Our findings underscored the influence of growth conditions and shell materials on the optical properties of QDs. The observed changes in absorbance, peak intensity, wavelength values, QDs size, and energy gap with increasing reaction time provided valuable insights into the growth dynamics of these QD structures.
Finger vein recognition and user identification is a relatively recent biometric recognition technology with a broad variety of applications, and biometric authentication is extensively employed in the information age. As one of the most essential authentication technologies available today, finger vein recognition captures our attention owing to its high level of security, dependability, and track record of performance. Embedded convolutional neural networks are based on the early or intermediate fusing of input. In early fusion, pictures are categorized according to their location in the input space. In this study, we employ a highly optimized network and late fusion rather than early fusion to create a Fusion convolutional neural network
... Show MoreThere is no doubt that leadership is a social phenomenon , and human activity does not take place , but remained in the family cohesive have a common goal Alaho instil confidence in the same of her sons to be better , and the importance of this subject Arta researchers to identify the extent to which children in this phenomenon and to identify the causes and extent of its spread in the community , has been directing an open question (Appendix 1) to a group of kindergarten teachers , to learn about the characteristics of leadership that can be enjoyed by kindergarten children . The current research aims to:
1. Detect levels of leadership qualities among kindergarten children in the light of the characteristics of leadership skills
2
With the rapid development of computers and network technologies, the security of information in the internet becomes compromise and many threats may affect the integrity of such information. Many researches are focused theirs works on providing solution to this threat. Machine learning and data mining are widely used in anomaly-detection schemes to decide whether or not a malicious activity is taking place on a network. In this paper a hierarchical classification for anomaly based intrusion detection system is proposed. Two levels of features selection and classification are used. In the first level, the global feature vector for detection the basic attacks (DoS, U2R, R2L and Probe) is selected. In the second level, four local feature vect
... Show MoreIn the past two decades, maritime transport traffic has increased, especially in the case of container flow. The BAP (Berth Allocation Problem) (BAP) is a main problem to optimize the port terminals. The current manuscript explains the DBAP problems in a typical arrangement that varies from the conventional separate design station, where each berth can simultaneously accommodate several ships when their entire length is less or equal to length. Be a pier, serve. This problem was then solved by crossing the Red Colobuses Monkey Optimization (RCM) with the Genetic Algorithm (GA). In conclusion, the comparison and the computational experiments are approached to demonstrate the effectiveness of the proposed method contrasted with other
... Show MoreFibromuscular dysplasia (FMD) is a noninflammatory and nonatherosclerotic arteriopathy that is characterized by irregular cellular proliferation and deformed construction of the arterial wall that causes segmentation, constriction, or aneurysm in the intermediate-sized arteries. The incidence of FMD is 0.42–3.4%, and the unilateral occurrence is even rarer. Herein, we report a rare case of a localized extracranial carotid unilateral FMD associated with recurrent transient ischemic attacks (TIAs) treated by extracranial-intracranial bypass for indirect revascularization. The specific localization of the disease rendered our case unique.
Calcifying epithelial odontogenic tumour (CEOT) is a benign odontogenic neoplasm of epithelial origin that secretes an amyloid‐like protein tending towards calcification. This study aims to describe a case series from Iraq of one of the rarest odontogenic tumours.
Clinical and histopathological analysis of Calcifying epithelial odontogenic tumour cases that are archived at the oral pathology laboratory of the college of dentistry (Baghdad University) from 2000 to 2019.
Six cases of CEOT were regi
Numeral recognition is considered an essential preliminary step for optical character recognition, document understanding, and others. Although several handwritten numeral recognition algorithms have been proposed so far, achieving adequate recognition accuracy and execution time remain challenging to date. In particular, recognition accuracy depends on the features extraction mechanism. As such, a fast and robust numeral recognition method is essential, which meets the desired accuracy by extracting the features efficiently while maintaining fast implementation time. Furthermore, to date most of the existing studies are focused on evaluating their methods based on clean environments, thus limiting understanding of their potential a
... Show More