Sol-gel method was use to prepare Ag-SiO2 nanoparticles. Crystal structure of the nanocomposite was investigated by means of X-ray diffraction patterns while the color intensity was evaluated by spectrophotometry. The morphology analysis using atomic force microscopy showed that the average grain sizes were in range (68.96-75.81 nm) for all samples. The characterization of Ag-SiO2 nanoparticles were investigated by using Scanning Electron Microscopy (SEM). Ag-SiO2 NPs are highly stable and have significant effect on both Gram positive and negative bacteria. Antibacterial properties of the nanocomposite were tested with the use of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacteria. The results have shown antibacterial effect of the Ag-SiO2 prepared as nanogel and nanopowder states, while the Ag-SiO2 nanopowder showed the highest capability against S. aureus. Both methods of biofilm showed an inhibition effect for Ag-SiO2 NPs, the synthetic Ag-SiO2 NPs showed highest inhibition effect on Gram positive bacteria S. aureus by using the biofilm microtiter method.
Background: Bone defect healing is a multidimensional procedure with an overlapping timeline that involves the regeneration of bone tissue. Due to bone's ability to regenerate, the vast majority of bone abnormalities can be restored intuitively under the right physiological conditions. The goal of this study is to examine the immunohistochemistry of bone sialoprotein in order to determine the effect of local application of bone sialoprotein on the healing of a rat tibia generated bone defect. Materials and Methods: In this experiment, 48 albino male rats weighing 300-400 grams and aged 6-8 months will be employed under controlled temperature, drinking, and food consumption settings. The animals will be subjected to a surgical procedure o
... Show MoreA large number of researchers had attempted to identify the pattern of the functional relationship between fertility from a side and economic and social characteristics of the population from another, with the strength of effect of each. So, this research aims to monitor and analyze changes in the level of fertility temporally and spatially in recent decades, in addition to estimating fertility levels in Iraq for the period (1977-2011) and then make forecasting to the level of fertility in Iraq at the national level (except for the Kurdistan region), and for the period of (2012-2031). To achieve this goal has been the use of the Lee-Carter model to estimate fertility rates and predictable as well. As this is the form often has been familiar
... Show MoreThe concern of this article is the calculation of an upper bound of second Hankel determinant for the subclasses of functions defined by Al-Oboudi differential operator in the unit disc. To study special cases of the results of this article, we give particular values to the parameters A, B and λ
Electrodeposition of metal oxides on graphite electrodes can improve their ability to remove organic substances. In this work, multicomponent oxides of Mn, Co, and Ni were electrochemically deposited on both the anode and cathode of graphite electrodes to enhance their performance in removing phenol. Formation of the deposit was achieved within 2 h in current densities of 20, 25, 30, and 35 mA/cm2 for better composite properties. The deposited layer was characterized by testing the surface structure, morphology, composition, and roughness. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and Atomic force microscopy (AFM) techniques facilitated these tests. The composite electrodes have synthesized
... Show MoreUtilizing the modern technologies in agriculture such as subsurface water retention techniques were developed to improve water storage capacities in the root zone depth. Moreover, this technique was maximizing the reduction in irrigation losses and increasing the water use efficiency. In this paper, a polyethylene membrane was installed within the root zone of okra crop through the spring growing season 2017 inside the greenhouse to improve water use efficiency and water productivity of okra crop. The research work was conducted in the field located in the north of Babylon Governorate in Sadat Al Hindiya Township seventy-eight kilometers from Baghdad city. Three treatments plots were used for the comparison using surface
... Show MoreSoil improvement has developed as a realistic solution for enhancing soil properties so that structures can be constructed to meet project engineering requirements due to the limited availability of construction land in urban centers. The jet grouting method for soil improvement is a novel geotechnical alternative for problematic soils for which conventional foundation designs cannot provide acceptable and lasting solutions. The paper's methodology was based on constructing pile models using a low-pressure injection laboratory setup built and made locally to simulate the operation of field equipment. The setup design was based on previous research that systematically conducted unconfined compression testing (U.C.Ts.). Th
... Show MoreIn the present study, nanoporous material type MCM-41 was prepared by the sol-gel technique and was used as a carrier for prednisolone (PRD) drug delivery. The structural properties of mesoporous were fully characterized by X-ray diffraction (XRD), N2 adsorption /desorption and Fourier-transform infrared (FTIR). The mass transfer in term of adsorption process (loading) and desorption process (releasing) properties were investigated. The maximum drug loading efficiency was equal to 38% and 47.5% at different concentrations. The PRD released was prudently studied in water media of pH 6.8 simulated body fluid (SBF) in according to "United State Pharmacopeia (USP38)". The results proved that the release of prednisolone from MCM-41
... Show MoreThe corrosion inhibition effect of a new furan derivative (furan-2-ylmethyl sulfanyl acetic acid furan-2-ylmethylenehydrazide) on mild steel in 1.0 M HCl was investigated using corrosion potential (ECORR) and potentiodynamic polarization. The obtained results indicated that the new furan derivative (furan-2-ylmethyl sulfanyl acetic acid furan-2-ylmethylenehydrazide) (FSFD) has a promising inhibitive effects on the corrosion of mild steel in 1.0 M HCl across all of the conditions examined. The density functional theory (DFT) study was performed on the new furan derivative (FSFD) at the B3LYP/6-311G (d, p) basis set level to explore the relation between their inhibition efficiency and molecular electro