Silicon nanowire arrays (SiNWs) are created utilizing the metal-assisted chemical etching method with an Ag metal as a catalyst and different etching time of 15, 30, and 60 minutes using n-Si (100). Physical properties such as structural, surface morphology, and optical properties of the prepared SiNWs are studied. The diameter of prepared SiNWs ranged from 20 to 280 nm, and the reflectance in the visible part of the wavelength spectrum was less than 1% for all prepared samples. The obtained energy gap of prepared SiNWs was around 2 eV, which is higher than the energy gap of bulk silicon. X-ray diffraction (XRD) has diffraction peaks at 68.70o for all prepared samples. The heterojunction solar cell was fabricated based on the n-SiNWs/ P3HT/PEDOT: PSS structure. The heterojunction solar cell produced for 60 minutes has the highest Jsc of 11.55 mA.cm-2 and a conversion efficiency of 0.93%. Based on SiNWs prepared for etching time of 15 min, the solar cell demonstrated Jsc and Voc of 2.73 mA/cm2 and 0.46 V, respectively, and a conversion efficiency of 0.34%.
Background: Ceramic veneers represent the treatment of choice in minimally invasive esthetic dentistry; one of the critical factors in their long term success is marginal adaptation. The aim of the present study is to evaluate the marginal gap of ceramic veneers by using two different fabrication techniques and two different designs of preparation. Material and methods: A typodont maxillary central incisor used in the preparation from which metal dies were fabricated, which were in turn used to make forty stone dies. The dies divided into four experimental groups, each group had ten samples: A1: prepared with butt-joint incisal reduction and restored with IPS e.max CAD, A2: prepared with overlapped incisal reduction and restored with IPS e.
... Show MoreBackground: The marginal adaptation has a key role in the success and longevity of the fixed dental restoration, which is affected by the impression and the fabrication techniques .The objective of this in vitro study was to evaluate and compare the marginal fitness of lithium disilicate crowns using two different digital impression techniques (direct and indirect techniques) and two different fabrication techniques (CAD/CAM and Press techniques). Materials and Methods: Thirty two sound upper first premolar teeth of comparable size extracted for orthodontic reason were selected in this study .Standardized preparation of all teeth samples were carried out with modified dental surveyor to receive all ceramic crown restoration with 1 mm deep
... Show MoreBackground: Oral squamous cell carcinoma (OSCC) is the most prevalent malignant neoplasm of the oral cavity and constitutes a major health problem in developing. In the last 30 years, the 5-year survival rate of patients with oral SCC has not improved despite advance in diagnostic techniques. To improve early diagnosis for this deadly disease, new biological markers are needed. HOX genes encode homeodomain-containing transcription factors involved in the regulation of cellular proliferation and differentiation during embryogenesis. HOX gene expression has been described in several adult tissues, where they performed important roles in maintaining homeostasis. Few studies have suggested that HOXA1 plays a role in tumorigenesis. Besides bein
... Show MoreThe success of endodontic therapy is relied on radicular system cleaning, shaping, elimination of micro-organisms, and three dimensional filling of the radicular complex.This study was conducted to develop and assess new root canal sealer incorporating nano-sized bioactive glass into Gutta Flow II. The following concentration was used depend on a pilot study included adding (3%) of 45S5 bioactive glass into the Gutta Flow II. These materials were tested through assessment bioactivity. bioactivity test was undertaken after immersion of the tested samples into PBS for three days, seven days, fourteen days, and twenty eight days using FTIR too. study was found that it’s peaks was appear at level 800-1000 cm-1. The results showed that GFII gr
... Show MoreFabrication and investigation of the properties of CdSe/ZnS core/shell for the luminescent solar concentrates (LSC) application is presented. An increase of the efficiency of a silicon solar cell was obtained by applying the LSC. The increase was a result of the optical properties of the semiconductor nanoparticles CdSe/ZnS core/shell that were deposited over the top surface of the silicon solar cell facing the illumination source (Halogen lamp). The gravity force was invested for the film deposition process.The optical properties of these nanoparticles were studied. The absorption spectra for the CdSe/ZnS core-shell were 270-600nm, i.e., located within the spectral response area of the examined solar cell. The energy gap values for CdSe
... Show MoreIn this paper, the solar surface magnetic flux transport has been simulated by solving the diffusion–advection equation utilizing numerical explicit and implicit methods in 2Dsurface. The simulation was used to study the effect of bipolar tilted angle on the solar flux distribution with time. The results show that the tilted angle controls the magnetic distribution location on the sun’s surface, especially if we know that the sun’s surface velocity distribution is a dependent location. Therefore, the tilted angle parameter has distribution influence.
Abstract
A new type of solar air heater was designed, fabricated, and tested in Baghdad, Iraq winter conditions. The heater consists of two main parts. The horizontal section was filled with the black colored iron chip while the vertical part has five pipes filled with Iraqi paraffin wax. A fan was fixed at the exit of the air. Two cases were studied: when the air moved by natural convection and when forced convection moved it. The studied air heater has proven its effectiveness as it heated the air passing through it to high temperatures. The results manifest that using little air movement makes the temperatures, stored energies, and efficiencies of the two studied cases converge
... Show MoreABSTRACT Porous silicon has been produced in this work by photochemical etching process (PC). The irradiation has been achieved using ordinary light source (150250 W) power and (875 nm) wavelength. The influence of various irradiation times and HF concentration on porosity of PSi material was investigated by depending on gravimetric measurements. The I-V and C-V characteristics for CdS/PSi structure have been investigated in this work too.