In this study, the performance of the adaptive optics (AO) system was analyzed through a numerical computer simulation implemented in MATLAB. Making a phase screen involved turning computer-generated random numbers into two-dimensional arrays of phase values on a sample point grid with matching statistics. Von Karman turbulence was created depending on the power spectral density. Several simulated point spread functions (PSFs) and modulation transfer functions (MTFs) for different values of the Fried coherent diameter (ro) were used to show how rough the atmosphere was. To evaluate the effectiveness of the optical system (telescope), the Strehl ratio (S) was computed. The compensation procedure for an AO system was implemented. Analytical analysis was used to define the wave front and aberrations of the circular aperture telescope. Zernike polynomials were used to describe the residual error and figure out how much the compensation changed the measured turbulence values. The results of the computer simulation involving atmospheric turbulence reveal that elevating the ro values (4, 8, 12, 16, 20, 24, 28, 32) cm resulted in a 3.4% rise in S. However, when the adaptive optics system operated with a constant ro (20 cm), augmenting the Zernike aberration modes led to a remarkable 44% increase in S, signifying a substantial enhancement in the compensation procedure.
In this article four samples of HgBa2Ca2Cu2.4Ag0.6O8+δ were prepared and irradiated with different doses of gamma radiation 6, 8 and 10 Mrad. The effects of gamma irradiation on structure of HgBa2Ca2Cu2.4Ag0.6O8+δ samples were characterized using X-ray diffraction. It was concluded that there effect on structure by gamma irradiation. Scherrer, crystallization, and Williamson equations were applied based on the X-ray diffraction diagram and for all gamma doses, to calculate crystal size, strain, and degree of crystallinity. I
... Show More