In this work, a Photonic Crystal Fiber (PCF) sensor based on the Surface Plasmon Resonance (SPR) technology was proposed. A thin layer of gold (Au) was deposited on a D-shaped Photonic Crystal Fiber (PCF), which was coated with plasmonic chemically stable gold material with a thickness of 40nm. The performance parameters like sensitivity including wavelength sensitivity and amplitude sensitivity and resolution were evaluated by simulation using COMSOL software. The proposed sensor was created by using the finite element approach, it is numerically examined. The results show that the surface of D-shaped Photonic Crystal Fiber coated with Au behaves as a sensor to detect the refractive index (IR) of toxic metal ions. The impacts of the structural characteristics on the resonant spectra are also researched in order to improve sensing performance. The greatest amplitude sensitivity was 99.2 RIU-1 and maximum resolution was 4 x 10-5 RIU achieved within the detection range (1.351-1.363).
The preparation of the title compound, C26H25N, was achieved by the condensation of an ethanolic mixture of benzaldehyde, cyclohexanone and ammonium acetate in a 2:1:1 molar ratio. There are two crystallographically independent molecules in the asymmetric unit. The two cyclohexyl rings adopt an
Background: Differentiation between malignant and benign vertebral compression fracture is often problematic. This is precisely difficult in elderly who are predisposed to benign compression caused by osteoporosis .Establishing correct diagnosis is of great importance in determining the treatment andprognosis.A study was performed to determine which magnetic resonance imaging findings are useful in discrimination between metastatic and acute osteoporotic compression fractures of the spine. Recently MRI is being increasingly used for evaluation of these fractures.Objectives: The aim of this study is to establish the correct diagnosis of malignant and benign compression vertebral fracture by MRI to determine treatment and prognosis.Methods
... Show MoreThis paper reports a.c., d.c. conductivity and dielectric behavior of Ep-hybrid composite with12 Vol.% Kevlar-Carbon hybrid . D.C. conductivity measurements are conducted on the graded composites by using an electrometer over the temperature range from (293-413) K. It was shown then that conductivity increases by increasing number of Kevlar –Carbon fiber layers (Ep1, Ep2, Ep3), due to the high electrical conductivity of Carbon fiber. To identify the mechanism governing the conduction, the activation energies at low temperature region (LTR) and at high temperature region (HTR) have been calculated. The activation energy values for hybrid composite decrease with increasing number of fiber layers. The a.c. conductivity was measured over fr
... Show MoreGenerally, radiologists analyse the Magnetic Resonance Imaging (MRI) by visual inspection to detect and identify the presence of tumour or abnormal tissue in brain MR images. The huge number of such MR images makes this visual interpretation process, not only laborious and expensive but often erroneous. Furthermore, the human eye and brain sensitivity to elucidate such images gets reduced with the increase of number of cases, especially when only some slices contain information of the affected area. Therefore, an automated system for the analysis and classification of MR images is mandatory. In this paper, we propose a new method for abnormality detection from T1-Weighted MRI of human head scans using three planes, including axial plane, co
... Show MorePPSU hollow fiber nanofiltration membranes are prepared by applying two concentrations and various extrusion pressures according to the phase inversion method. Cross-sectional area and outer structures were characterized by using scanning electron microscope (SEM) and atomic force microscopy (AFM). In additional to the pore size distribution, either the mean roughness or the mean pore size of the PPSU hollow fiber surfaces was evaluated by AFM. It was found that the morphology of the PPSU fibers had both sponge-like and finger-like structures through different extrusion pressures and PPSU concentrations. The mean pore size and mean roughness for inner and outer surfaces were seen to be decreased with the increase of extrusion pressure at
... Show MoreDesign and Construction system for recording Finger print by laser, and separted the signal to noise by holographic element, was done. For safety, total reflection lighting ensures hat aser earns an not enter An operators eyes. Holographic diffraction grating was used instead of computer program to contrast images.
A reinforced concrete frame is referred as "RIGID FRAMES". However, researches indicate that the Beam-Column joint (BCJ) is definitely not rigid. In addition, extensive research shows that failure may occur at the joint instead of in the beam or the column. Joint failure is known to be a catastrophic type which is difficult to repair.
This study was carried out to investigate the effect of hoops and column axial load on the shear strength of high-strength fiber reinforced Beam-Column Joints by using a numerical model based on finite element method using computer program ANSYS (Version 11.0). The variables are: diameter of hoops and magnitude of column axial load.
The theoretical results obtained from ANSYS program are in a good a
The massive growth of the automotive industry and the development of vehicles use lead to produce a huge amount of waste tire rubber. Rubber tires are non-biodegradable, resulting in environmental problems such as fire risks. In this search, the flexural behavior of steel fiber reinforced self-compacting concrete (SFRSCC) beams containing different percentages and sizes of waste tire rubbers were studied and compared them with the flexural behavior of SCC and SFRSCC. Micro steel fiber (straight type) with aspect ratio 65 was used in mixes. The replacement of coarse and fine aggregate was 20% and 10% with chip and crumb rubber. Also, the replacement of limestone dust and silica fume was 50%, 25%, and 12% with ground rubbe
... Show More