Biomedical alloy 316L stainless steel enhancing to replace biological tissue or to help stabilize a biological structure, such as bone tissue, enhancing were coated with deposition a thin layer of silver nanoparticles as anti-bacterial materials by using DC- magnetron sputtering device. The morphology surface of The growth nanostructure under the influence of different working pressure were studied by atomic force microscope. The average grain size decrease but roughness of the silver thin layer was increased with‖ ―increasing the working pressure. The thickness of silver thin layer was increased from 107 nm at 0.08 mbar to 126 nm at 1.1 mbar. Antimicrobial activity of silver thin layers at different working pressure were studied. The results showed that the increasing in working pressure, lead to increase in activity of silver thin coating layer against the bacteria as a result of increasing in thickness and‖ roughness of thin coating layer. This work has been extended to study the anti-bacterial activity were fount the diameters of inhibition zone of gram positive bacteria between 16.5±1.5 and 19±0.5 while the diameters of inhibition zone of gram positive bacteria between 17±1 and 26±1. Finally the measurements of the 316L alloy coated by silver nanocoating layer after immersing the in simulated body fluid (SBF) solution for one month is the XRD pattern for the sample showed obviously that the Hydroxyapatite layer was appeared at (2= 31.8).
In this study, the antimicrobial properties of newly synthesized Schiff bases (4a-4e) and thiazolidinone compounds (5a-5e) generated from 3,5-dinitrobenzoic acid were assessed. These compounds were obtained by reacting 3,5-dinitrobenzoic acid (1) with ethanol in a few drops of concentrated H2SO4 to produce the ester (2). The acid hydrazide (3), which was produced by treating the ester with hydrazine hydrate, reacted with the proper aldehydes, including 4-bromobenzaldehyde, 4-chlorobenzaldehyde, 4-hydroxybenzaldehyde, 4-methoxybenzaldehyde, and 4-hydroxy-3-methoxybenzaldehyde, respectively, to form Schiff bases (4a-4e). The thiazolidinone compounds (5a-5e) were produced by the cyclocondensation reaction of compounds (4a-4e) with thio
... Show MoreThe synthesis of the bisaldehyde ligand 2-(1,1-dimethyl-1,3-dihydro-2H-benzo[e]indol-2-ylidene)malonaldehyde (B) and its coordinated compounds with Cr(III), Mn(II), Fe(II), Co(II), Ni(II) and Cu(II) ions are reported. The synthetic route of B was completed by adopting the Vilsmeier-Haack reaction. This was based on the mixing of 1,1,2-trimethyl-1H-benzo[e]indole with phosphoryl trichloride and N, N-dimethylformamide (anhydrous) that gave the aminomethylenemalondialdehyde. The use of POCl3 and DMF was aimed to give the Vilsmeier-Haack intermediate, which was kept at 5°C and then heated with stirring at 85°C. The addition of an aqueous NaOH solution (35%) to the reaction mixture resulted in the isolation of B. The monomeric coordinated comp
... Show MoreSynthesis of 2-mercaptobenzothiazole (A1) is performed from the reaction of o-aminothiophenol and carbon disulfide CS2 in ethanol under basic condition. Compound (A1) is reacted with chloro acetyl chloride to give compound (A2). Hydrazide acid compound (A3) is obtained from the reaction of compound (A2) with hydrazine hydrate in ethanol under reflux in the presence of glacial acetic acid .The reaction of hydrazide acid compound (A3) with ethyl acetoacetate gives pyrazole compound (A4). The new hydrazone compound (A5) was prepared from the reaction of compound (A3) with benzaldehyde. Reaction of compound
... Show MoreA Schiff base ligand (L) was synthesized via condensation of
In this paper, series of new complexes of Manganese(II), Cobalt(II), Nickel (II) Cupper(II) Zinc(II), Cadmium(II) and Mercury (II) are prepared from the new ligand [2-(3-benzoylthioureido)-3-(-4- hydroxyphenyl) propanoic acid (BHP) derived from tyrosine and benzoylisothiocyanate .Chemical structures are obtained from their 1 H, 13CNMR spectra (for BHP), elemental microanalyses, molar conductance, FTIR, UV–Vis, magnetic susceptibility in addition to TGA/DTG and DSC analysis, the suggested geometry for all complexes was tetrahedral. The biological activity of BHP and its complexes has been extensively studied against two bacterial species Staphylococcus aurous (G+) and Escherichia coli (G-) by agar-well diffusion technique, where Mn(II), Co
... Show MoreAddition chloro acetyl isothiocyanate (C3H2ClNOS) with 3-Aminoaceto phenone (C8H9NO) to prepare a fresh Ligand [N-(3-acetyl phenyl carbamothioyl)-2-chloroacetamide](L). The ligand (L) behaves as bidentate coordinating through O and S donor with metal ions, the general formula of all complexes [M(L)2(Cl)2](M+2 = Manganese(II), Cobalt(II), Cadmium(II) and Mercury(II)). Compounds were investigation by Proton-1, Carbon -13 NMR spectra (ligand (L) only), Element Microanalysis for C, N, H, O, S, Fourier-transform infrared, UV visible, Conductance
The reaction of 2-amino benzoic acid with 1,2-dichloroethane under reflux in methanol and KOH as a base to gave the precursor [H4L]. The precursor under reflux and drops of CH3COOH which reacted with (2mole) from salicycaldehyde in methanol to gave a new type N2O4 ligand [H2L], this ligand was reacted with (MCl2) Where [M= Co (II), Ni(II), Cu(II) and Zn(II)] in (1:1) ratio at reflux in methanol using KOH as a base, to give complexes of the general formula [M(L)]. All compounds have been characterized by spectroscopic methods [1H NMR ( just to the ligand), FTIR, uv-vis, atomic absorption], melting point, conductivity, chloride content, as well as magnetic susceptibility measurements. From the above data, the proposed molecular structu
... Show More