Biomedical alloy 316L stainless steel enhancing to replace biological tissue or to help stabilize a biological structure, such as bone tissue, enhancing were coated with deposition a thin layer of silver nanoparticles as anti-bacterial materials by using DC- magnetron sputtering device. The morphology surface of The growth nanostructure under the influence of different working pressure were studied by atomic force microscope. The average grain size decrease but roughness of the silver thin layer was increased with‖ ―increasing the working pressure. The thickness of silver thin layer was increased from 107 nm at 0.08 mbar to 126 nm at 1.1 mbar. Antimicrobial activity of silver thin layers at different working pressure were studied. The results showed that the increasing in working pressure, lead to increase in activity of silver thin coating layer against the bacteria as a result of increasing in thickness and‖ roughness of thin coating layer. This work has been extended to study the anti-bacterial activity were fount the diameters of inhibition zone of gram positive bacteria between 16.5±1.5 and 19±0.5 while the diameters of inhibition zone of gram positive bacteria between 17±1 and 26±1. Finally the measurements of the 316L alloy coated by silver nanocoating layer after immersing the in simulated body fluid (SBF) solution for one month is the XRD pattern for the sample showed obviously that the Hydroxyapatite layer was appeared at (2= 31.8).
Antibiotic resistance increment is a major problem for the human society nowadays which encourages the efforts to look for new therapeutic alternatives from natural defenses. Synergistic antibacterial activity of epidermin and staphylolysin LasA A against Staphylococcus aureus (Staph aureus), Escherichia coli (E. coli) and Pseudomonas aeruginosa (Ps. aeruginosa) was evaluated. The antibacterial activities of epidermin from Staphylococcus epidermidis (Staph epidermidis) and Staphylolysin (LasA) from Ps. aeruginosa using the agar well diffusion assay were evaluated, and then using the micro dilution method to evaluate the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC). The checkerboard method and fract
... Show MoreNanoparticles produced by plants are preferred in the medical field for its safe and unpolluted product; it is also accepted as an ecofriendly, non-expensive, and non-toxic nanomaterial. In this study, silver nitrate was successfully used to produce silver nanoparticles (AgNPs) by the use extractsof 4 different latex-producing plants which belong to 2 families (Moraceae and Euphorbiaceae). The synthesis was proved by Atomic Force Microscopy (AFM).The sizes of the AgNP grains were estimated by Granularity Cumulating Distribution (GCD). The results revealed the production of AgNPs in different sizes of 103 and 82 nm using the Moraceae family and 77 and74nm using the Euphorbiaceae
... Show MoreThis study was designed to investigate the capability of gram-negative bacteria that isolated form wound and burn infection to production of Biofilm which included (32) isolates, which have multi – drug resistant to antibiotics. The isolates included (10) Pseudomonas aeruginosa, (9) Klebsiella pneumoniae, (6) Escherichia coli, (5) Proteus mirabilis and (2) Enterobacter cloacae. The method used method links the crystal violet with biofilm and reading by ELISA which was adopted on the values of optical density of violets that linked to the mass of biofilm at the wavelength of (620) nm, the test results showed variation of biofilm composition for all bacterial species depending on the optical density value while th
... Show MoreIn the current research, an eco-biosynthesis method for synthesizing silver nanoparticles (AgNPs) is reported using thymus vulgaris leaves (T. vulgaris) extracts. The optical and structural properties of the nanoparticles is determined using UV-visible, x-ray diffraction (XRD) and field emission scanning electron microscope (FESEM). In addition, the synthesis factors such as the temperature, the molar ratio of silver nitride and thymus vulgaris leaves extract have been investigated. The XRD pattern presented higher intensity for the five characteristic peaks of silver. FESEM images for same samples indicated that the particle size was distributed between 24-56 nm. In addition, it’s observed the formation of some aggregated Ag particles
... Show MoreIn recent years, infectious diseases are increasingly being encountered in clinical settings. Due to the development of antibiotic resistance and the outbreak of these diseases caused by resistant pathogenic bacteria, the pharmaceutical companies and the researchers are now searching for new unconventional antibacterial agents. Recently, in this field, the application of nanoparticles is an emerging area of nanoscience and nanotechnology. For this reason, nanotechnology has a great deal of attention from the scientific community and may provide solutions to technological and environmental challenges. A common feature that these nanoparticles exhibit their antimicrobial behavior against pathogenic bacteria. In this report, we evaluate
... Show MoreSilver nanoparticles (AgNPs) were biosynthesized using the cell free supernatant of putative probiotic Lactobacillus paracasei A26. Several biological activities of biogenic AgNPs were investigated in respect to in vitro anti-oxidant and anti-tumor potentials. Anti-oxidant potentials were screened in terms of free radical scavenging activity against two free radicals, 2, 2-Diphenyl-1-picrylhydrazyl (DPPH) and resazurin dye. AgNPs exhibited a potent scavenging activity against resazurin dye (91±0.046%) with an EC50 concentration of 146.823 µg/ml, while scavenging of DPPH was significantly (P≤0.05) reduced to 72.330±0.114% using a higher EC50 concentration of 176.12 µg/ml. The
... Show MoreThe influence of different types of plasmonic gold (Au-NPs) and silver (Ag-NPs) nanoparticles as well as aging on the performance of Surface-Enhanced Raman Scattering (SERS) sensors were studied. The average diameters of Au-NPs and Ag-NPs were about 23 nm and 15 nm, respectively, with a number of laser pulses of about 200. plasmonic nanoparticles were synthesized by laser ablation process in distilled water using a fixed energy laser fluence of about 14 J/cm2 of Nd-YAG laser, with 1060 nm wavelength and 1 Hz pulse repetition rate. The SERS sensor was carried out by quick drop casting process of plasmonicplasmonic nanoparticles on glass substrates. The morphological aspects and the performance of SERS sensors were investigated
... Show MoreIn the current study, three types of algae namely Tetradesmus nygaardi (MZ801740), Scenedesmus quadricauda (MZ801741) and Coelastrella sp (MZ801742) were extracted by 95% ethanol and hexane against two types of gram positive and two types of gram negative bacteria by wells diffusion methods. Eleven concentrations from the extract of algae (2, 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 mg/ml) were utilized. It was noticed that ethanolic extraction was more effective than hexane in Scenedesmus quadricauda than the two other mentioned algal species against all pathogenic bacteria, Acintobacter baumanii (ATCC: 19606), Klebsiella pneumonia (ATCC: 13883) Enterococcus faecalis (ATCC: 29212) and Staphylococc
... Show MoreThe antimicrobial activity of ginger extracts ( cold-water, hot-water, ethanolic and essential oil ) against some of pathogenic bacteria ( Escherichia coli , Salmonella sp , Klebsiella sp , Serratia marcescens, Vibrio cholerae , Staphylococcus aureus , Streptococcus sp) was investigated using Disc diffusion method , and the results were compared with the antimicrobial activity of 12 antibiotics on the same bacteria . The results showed that the ginger extracts were more effective on gram-positive bacteria than gram-negative . V. cholerae and S. marcescens,were the most resistant bacteria to the extracts used , while highest inhibition was noticed against Streptococcus sp (28 mm) . The ethanolic extract showed the broadest antibacterial ac
... Show More