The present work aimed to study effect of (N749 & N3) dyes on TiO2 optical and electrical properties for optoelectronic application. The TiO2 paste prepared by using a doctor blade method. The samples were UV-VIS specterophometricall analyzes of TiO2 before and after immersed in dyes (N749 & N3). The results showed absorption spectra shift toward the visible region due to the adsorption of dye molecules on the surface of oxide nanoparticles. It is seen that the Eg determined to give a value of 3.3eV for TiO2 before immersing in dyes, and immersing in dyes (N749 & N3) are (1.4 &1.6 eV) respectively. The structural properties (XRD), (FTIR) and (SEM) for the sample prepared were investigated and (J-V) characteristics was studied, it was seen efficiency 3.8 % and 2.09 % for TiO2/N749, TiO2/N3, respectively.
With and without the use of magnetic fields, titanium dioxide (TiO2) nanoparticles were synthesized using the hydrothermal method at extremely high temperatures and pressures. Titanium tetra isopropoxide [Ti(C12H28O4)] was used for the preparation, which was performed at pH 7 and under temperatures of 160 and 190 ˚C. UV spectroscopy, XRD crystallography, FE-SEM microscopy were used for characterizations. From UV spectroscopy, the energy gap values were clearly affected by the increase in temperature and the presence of the magnetic field. At the temperatures of 160 and 190 oC for TiO2 without magnetic field, FE-SEM microscopy images have shown an average c
... Show MoreThe modulation of chaotic behavior in semiconductor laser with A.C coupling optoelectronic feedback has been numerically and experimentally reported. The experimental and numerical studying for the evaluation of chaos modulation behavior are considered in two conditions, the first condition, when the frequency of the external perturbation is varied, secondly, when the amplitude of this perturbation is changed. This dynamics of the laser output are analyzed by time series, FFT and bifurcation diagram.
In this work we reported the synchronization delay in
semiconductor laser (SL) networks. The unidirectional
configurations between successive oscillators and the correlation
between them are achieved. The coupling strength is a control
parameter so when we increase coupling strength the dynamic of the
system has been change. In addition the time required to synchronize
network components (delay of synchronization) has been studied as
well. The synchronization delay has been increased by mean of
increasing the number of oscillators. Finally, explanation of the time
required to synchronize oscillators in the network at different
coupling strengths.
This study was carried out in the botanical garden / department of biology /college of science in Mustansiriyah University, Baghdad. During spring 2017 under controlled environmental conditions in greenhouse to study the role of Nano ZrO2 activity in decrease negative effect of salinity under two levels from NaCl . The treatments included (Salinity levels : natural soil , 3000 ppm and 6000 ppm NaCl) and ( Applications : control , 100 , 300 Zirconium oxide , 5 ppm of liquorice root extract and 10 ppm liquorice root extract and 300 ppm GA3) , The collected data were analyzed statistically using factorial completely randomized design. The results appeared that 300 ppm nano zirconium gave the highest
... Show MoreThis research including, CO3O4 was prepared by the chemical spry pyrolysis, deposited film acceptable to assess film properties and applications as photodetector devise, studying the optical and optoelectronics properties of Cobalt Oxide and effect of different doping ratios with Br (2, 5, 8)%. the optical energy gap for direct transition were evaluated and it decreases as the percentage Br increase, Hall measurements showed that all the films are p-type, the current–voltage characteristic of Br:CO3O4 /Si Heterojunction show change forward current at dark varies with applied voltage, high spectral response, specific detectivity and quantum efficiency of CO3O4 /Si detector with 8% of Br ,was deliberate, extreme value with 673nm.
... Show MoreAThe Bridge Maintenance Management System (BMMS) is an application system that uses existing data from a Bridge Management System database for monitoring and analysis of current bridges performance, as well as for estimating the current and future maintenance and rehabilitation needs of the bridges. In a transportation context, the maintenance management is described as a cost-effective process to operate, construct, and maintain physical money. This needs analytical tools to support the allocation of resources, materials, equipment, including personnel, and supplies. Therefore, Geographic Information System (GIS) can be considered as one tool to develop the road and bridge maintenanc
The specifications of lubricating oil are fundamentally the final product of materials that have been added for producing the desired properties. In this research, spherical nanoparticles copper oxide (CuO) and titanium oxides (TiO2) are added to SAE 15W40 engine oil to study the thermal conductivity, stability, viscosity of nano-lubricants, which are prepared at different concentrations of 0.1%, 0.2%, 0.5%, and 1% by weight, and also their pour point, and flash point as five quality parameters. The obtained results show that CuO nanoparticles in all cases, give the best functionality and effect on engine oil with respect to TiO2. With 0.1 wt. % concentration, the thermal conductivity of CuO/oil and TiO2/
... Show MoreIn this paper, a compact multiband printed dipole antenna is presented as a candidate for use in wireless communication applications. The proposed fractal antenna design is based on the second level tent transformation. The space-filling property of this fractal geometry permits producing longer lengths in a more compact size. Theoretical performance of this antenna has been calculated using the commercially available software IE3D from Zeland Software Inc. This electromagnetic simulator is based on the method of moments (MoM). The proposed dipole antenna has been found to possess a considerable size reduction compared with the conventional printed or wire dipole antenna designed at the same design frequency and using the same substrate
... Show MoreDue to the urgent need to develop technologies for continuous glucose monitoring in diabetes individuals, poten tial research has been applied by invoking the microwave tech niques. Therefore, this work presents a novel technique based on a single port microwave circuit, antenna structure, based on Metamaterial (MTM) transmission line defected patch for sensing the blood glucose level in noninvasive process. For that, the proposed antenna is invoked to measure the blood glu cose through the field leakages penetrated to the human blood through the skin. The proposed sensor is constructed from a closed loop connected to an interdigital capacitor to magnify the electric field fringing at the patch center. The proposed an tenna sensor i
... Show More