A simple physical technique was used in this study to create stable and cost-effective copper oxide (CuO) nanoparticles from pure copper metal using the pulsed laser ablation technique. The synthesis of crystalline CuO nanoparticles was confirmed by various analytical techniques such as particle concentration measurement using atomic absorption spectrometry (AAS), field emission scanning electron microscopy (FE-SEM), the energy dispersive X-ray (EDX), and X-ray diffraction (XRD) to determine the crystal size and identify of the crystal structure of the prepared particles. The main characteristic diffraction peaks of the three samples were consistent. The corresponding 2θ is also consistent, and the cytotoxicity of the nanoparticles was also investigated. After 24 hours of exposure, the percentage of cytotoxicity was calculated. The maximum toxicity of Hep-G2 was 37.81% at the maximum concentration of (500) µg mL-1 after 24 hours of exposure. Also, the maximum toxicity of the normal cell line was 27.85% at a maximum concentration of (500) µg mL-1.
The high carbon dioxide emission levels due to the increased consumption of fossil fuels has led to various environmental problems. Efficient strategies for the capture and storage of greenhouse gases, such as carbon dioxide are crucial in reducing their concentrations in the environment. Considering this, herein, three novel heteroatom-doped porous-organic polymers (POPs) containing phosphate units were synthesized in high yields from the coupling reactions of phosphate esters and 1,4-diaminobenzene (three mole equivalents) in boiling ethanol using a simple, efficient, and general procedure. The structures and physicochemical properties of the synthesized POPs were established using various techniques. Field emission scanning elect
... Show MoreOwing to their cost-effectiveness and the natural abundance of magnesium, magnesium-ion batteries (MIBs) were introduced as encouraging alternatives to Lithium-ion batteries. Following the successful synthesis of carbon nano-tube, its B and N doped derivatives which were doped with B and N enjoyed the attention of researchers as novel anode materials (AM) for MIBs. Here, we investigated a BC2N nano-tube (BC2NNT) as an encouraging AM for MIBs. To have a deeper understanding of the electrochemical properties, cycling stability, specific capacity (SC) and the adsorption behavior of this nano-tube, first-principles density functional theory computations were performed. By performing NMR calculations, we identified two types of non-aromatic hexa
... Show MoreThe study aims to predict Total Dissolved Solids (TDS) as a water quality indicator parameter at spatial and temporal distribution of the Tigris River, Iraq by using Artificial Neural Network (ANN) model. This study was conducted on this river between Mosul and Amarah in Iraq on five positions stretching along the river for the period from 2001to 2011. In the ANNs model calibration, a computer program of multiple linear regressions is used to obtain a set of coefficient for a linear model. The input parameters of the ANNs model were the discharge of the Tigris River, the year, the month and the distance of the sampling stations from upstream of the river. The sensitivity analysis indicated that the distance and discharge
... Show MoreShear wave velocity is an important feature in the seismic exploration that could be utilized in reservoir development strategy and characterization. Its vital applications in petrophysics, seismic, and geomechanics to predict rock elastic and inelastic properties are essential elements of good stability and fracturing orientation, identification of matrix mineral and gas-bearing formations. However, the shear wave velocity that is usually obtained from core analysis which is an expensive and time-consuming process and dipole sonic imager tool is not commonly available in all wells. In this study, a statistical method is presented to predict shear wave velocity from wireline log data. The model concentrated to predict shear wave velocity fr
... Show MoreAbstract: Coronavirus disease 2019 (COVID-19) is an infectious disease with severe acute respiratory syndrome and first recognized in Wuhan, China, and it has since spread to the world, resulting in the coronavirus pandemic to 2020. The present study aimed to evaluate Molecular study of some types of vaginal fungi isolated from recovered women from Covid-19 in Baghdad governorate. The study was conducted on 213 samples collected between December 2021 and March 2022, where the number of positive samples reached 188 with percentage 88.26%, while the number of negative samples reached 25 with percentage 11.73% by taking vaginal swabs from various female patients in Al- Kadhimiya Teaching Hospital. Three of Candida spp. were isolated: Candida a
... Show MoreBrowse Iraqi academic journals and research papers
Light has already becomes a popular means of communication, and the high-bandwidth data into free space without the use of wires. A great idea took us to design a new system for transmitting sound through free space at (650, 532) nm wavelengths using reflective mirrors under different atmospheric conditions. The study showed us the effect of various weather factors (temperature, wind speed and humidity) on these wavelengths for different distances. As well as studying the attenuation caused by long-distance laser and beam divergence, A reflective dish was used to focus the spot of the laser beam on the photocell. Results were discussed under the effect of these factors and the attenuation resulting from the beam divergence. Thus, the sys
... Show MoreThe present study dealt with the removal of methylene blue from wastewater by using peanut hulls (PNH) as adsorbent. Two modes of operation were used in the present work, batch mode and inverse fluidized bed mode. In batch experiment, the effect of peanut hulls doses 2, 4, 8, 12 and 16 g, with constant initial pH =5.6, concentration 20 mg/L and particle size 2-3.35 mm were studied. The results showed that the percent removal of methylene blue increased with the increase of peanut hulls dose. Batch kinetics experiments showed that equilibrium time was about 3 hours, isotherm models (Langmuir and Freundlich) were used to correlate these results. The results showed that the (Freundlich) model gave the best fitting for adsorption capacity. D
... Show More