The Indian costus plasma properties are investigated including electron temperature (Te), "electron density (ne)", "plasma frequency (fp)", " Debye sphere length", and amount of Debye(Nd), using the spectrum of optical emission technique. There are several energies used, with ranging from 300 to 600 mJ. The Boltzmann Plot is used to calculate the temperature; where as Stark's Line Broadening is used to calculate the electron density. The Indian costus was spectroscopically examined in the air with the laser at 10 cm away from the target and the optical fiber at 0.5 cm away. The results were obtained for an electron temperature range of (1.8-2.2) electron volts (ev) and a wavelength range of (300-600) nm. The XRF analysis reveals that the Indian costus contains a variety of minerals, each with a different percentage, which explains why the optical emission spectrum has so many peaks. When the laser energy is (between 300 and 600 mJ) the "optical emission spectroscopy (OES) "has been used to analyze the plasma spectrum of the Indian costus in the air. The results shows that as the laser energy grew, the amount of Debye will be greater i-e (Nd) >>>1, which is one of the plasma properties.
Since its first description as a cytotoxic agent, Olea europaea leaves extract gained significant popularity against human breast cancer, ethyl acetate extract of Olea europaea leaves obtained by acid hydrolysis method was evaluated in vitro as cytotoxic agent against new human breast cancer (AMJ13) cell line, using the MTT assay. One main pentacyclic triterpenoid; oleanolic acid, was isolated from leaves of Olea europaea by well-known two different methods, but not used for this compound before, the acidic hydrolysis method and basic acidic method. The presence of oleanolic acid was proved in both methods with qualitative and quantitative d
... Show MoreObjectives Dental implant is a revolution in dentistry; some shortages are still a focus of research. This study use long duration of radiofrequency (RF)–magnetron sputtering to coat titanium (Ti) implant with hydroxyapatite (HA) to obtain a uniform, strongly adhered in a few micrometers in thickness. Materials and Methods Two types of substrates, discs and root form cylinders were prepared using a grade 1 commercially pure (CP) Ti rod. A RF–magnetron sputtering device was used to coat specimens with HA. Magnetron sputtering was set at 150 W for 22 hours at 100°C under continuous argon gas flow and substrate rotation at 10 rpm. Coat properties were evaluated via field emission scanning electron microscopy (FESEM), scanning electro
... Show MoreThis study aims to evaluate the biocompatibility of a novel filler material intended to improve the longevity of polymer systems used in prosthetics in respect of cytotoxicity and skin irritation. RTV50F silicone elastomer incorporated with various percentages of hexagonal boron nitride (H-BN) (0.1, 0.3, 0.5, 0.7, and 1 wt%) have been tested. Silicone without H-BN was utilized as the control for comparison. The in vitro cytotoxicity test includes specimens (n=18) with 10 mm in diameter and 2 mm in thickness applied directly to the normal human fibroblast cell line (NHF) and incubated for 72 hours, then 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to determine the cell viability. The skin irritati
... Show MoreThe effects of BaCl2 dopant on the optical properties of poly (vinyl alcohol) have been investigated. Pure and BaCl2 doped PVA films were prepared using solvent casting method. These films were characterized using UV/VIS technique in order to estimate the kind of transition which was found to be indirect transition. The value of the optical energy gap was decrease with increasing dopant concentration.
Refractive index, extinction coefficient and Urbach tail have been also investigated; it was found that all the above parameters affects by doping.
The optical transmission and absorption spectra in UV-VIS were recorded in the wavelength range 350-800 nm for different glass compositions in the system: (CuO)x (PbO)50-x (Bi2O3)50 (x=2.5, 5.0, 7.5, 10.0, 12.5, 15.0, 20.0). Absorption coefficient {α (λ)}, optical energy gap (Eopt), refractive index (n), optical dielectric constant (ε`), Urbach energy (Ee), constant B and ratio of carrier concentration to the effective mass (N/m) have been reported. The effects of compositions of glasses on these parameters have been discussed. It has been indicated that a small compositional modification of the glasses lead to an important change in all the optical properties including non-linear behavior. The optical parameters were found to b
... Show MoreThis article aims to establish and evaluate standards for critical equipment and materials in highway projects in Iraq. Delphi technique has been used to analyze, explore, and discover the main criteria and sub-criteria that affect equipment and materials in highway construction projects in Iraq. To determine the correct response to the criteria presented in this study, a program (IBM, SPSS/V25) was used to assess the main criteria and sub-criteria using the mean score (MS) and standard deviation (SD) technique, as well as to check reliability using Cronbach's alpha factor (α). The experts' qualifications and the extent to which the person is ready to commit are both important factors in panel selection. The design of a
... Show MoreStructural, optical, and electrical properties of thin films of CdS : Zn prepared by the solution – growth technique are reported as a function of zinc concentration. CdS are window layers influencing the photovoltaic response of CIS solar cells. The zinc doping concentration was varied from 0.05 to 0.5 wt %, zinc doping apparently increase the band gap and lowers the resistivity. All beneficial optical properties of chemically deposited CdS thin films for application as window material in heterojunction optoelectronic devices are retained. Heat treatment in air at 400 °C for 1h modify crystalline structure, optical, and electrical properties of solution growth deposited CdS : Zn films.
In this work, chemical spray pyrolysis deposition (CSP) technique was used to prepare a mixed In2O3-CdO thin films with different CdO content (10, 30 and 50)%volume ratio on glass substrates at 150 ᵒC substrate temperature. The surface morphology and structural properties were measured to find the optimum conditions to improve thin films properties for using as photo detector. Current –Time, the sensitivity and response speed vary for each mixture. Samples with 10% vol. CdO content has square pulse response with average rise time nearly 1s and fall time 1s.
Thin films of CdTe were prepared with thickness (500, 1000) nm on the glass substrate by vacuum evaporation technique at room temperature then treated different annealing temperatures (373,473,and 573)K for one hour. Results of the Hall Effect and the electrical conductivity of (I-V) characteristics were measured in darkness and light.at different annealing temperature results show that the thin films have ability to manufacture solar cells, and found that the efficient equal to (2.18%) for structure solar cell (Algrid / CdS / CdTe /glass/ Al) and the efficient equal to (1.12%) for structure solar cell (Algrid / CdS / CdTe /Si/ Al) with thick ness of (1000) nm with CdTe thin films at RT.
The current study uses the flame fragment deposition (FFD) method to synthesize carbon nanotubes (CNTs) from Iraqi liquefied petroleum gas (LPG), which is used as a carbon source. To carry out the synthesis steps, a homemade reactor was used. To eliminate amorphous impurities, the CNTs were sonicated in a 30 percent hydrogen peroxide (H2O2) solution at ambient temperature. To remove the polycyclic aromatic hydrocarbons (PAHs) generated during LPG combustion, sonication in an acetone bath is used. The produced products were investigated and compared with standard Multi-walled carbon nanotube MWCNTs (95%), Sigma, Aldrich, using X-ray diffraction (XRD), thermo gravimetric analysis (TGA), Raman spectroscopy, scanning el
... Show More