The Indian costus plasma properties are investigated including electron temperature (Te), "electron density (ne)", "plasma frequency (fp)", " Debye sphere length", and amount of Debye(Nd), using the spectrum of optical emission technique. There are several energies used, with ranging from 300 to 600 mJ. The Boltzmann Plot is used to calculate the temperature; where as Stark's Line Broadening is used to calculate the electron density. The Indian costus was spectroscopically examined in the air with the laser at 10 cm away from the target and the optical fiber at 0.5 cm away. The results were obtained for an electron temperature range of (1.8-2.2) electron volts (ev) and a wavelength range of (300-600) nm. The XRF analysis reveals that the Indian costus contains a variety of minerals, each with a different percentage, which explains why the optical emission spectrum has so many peaks. When the laser energy is (between 300 and 600 mJ) the "optical emission spectroscopy (OES) "has been used to analyze the plasma spectrum of the Indian costus in the air. The results shows that as the laser energy grew, the amount of Debye will be greater i-e (Nd) >>>1, which is one of the plasma properties.
The work demonstrates the effect of cold atmospheric plasma (CAP) on adult female rats suffering from osteoporosis, the used plasma was generated by a floating electrode-dielectric barrier discharge system with an electrode diameter of 3 cm. The output power was from (12-20) watts. The effect of non-thermal plasma was observed on rats with various exposure times of 20, 30, and 40 sec. It was noted that the blood calcium percentage of animals exposed to cold plasma increased, as well as an increase in the level of vitamin D3 at the same time, it is noted that there is no effect on parathyroid hormone level. For the thyroid gland, it is noticed an increase in the level of T3, and T4 hormones in the blood during the period of induction for
... Show MoreObjectives: To determined the levels of lipid profile (TC, TG, HDL-c, LDL-C, VLDL) in diabetic and diabetic neuropathy patients and compare the results with control group. Also, to compare Atherogenic Index of Plasma (AIP) levels in these groups that may be predict prone of patients to cardiovascular disease. Methodology: Ninety subjects were enrolled in this study with aged ranged (40-65) years and BMI with (30-35) Kg/m2 that divided into three groups as follows: group one (G1) consists of 30 healthy individuals as a control group, group two (G2) consists of 30 patients with diabetes and group three (G3) consists of 30 patients with diabetes and neuropathy as complication. Electrochemical Skin Conductance (Feet Mean), Electrochemic
... Show MoreThe present work intends to study of dc glow discharge were generated between pin (cathode) and a plate (anode) in Ar gas is performed using COMSOL were used to study electric field distribution along the axis of the discharge and also the distribution of electron density and electron temperature at constant pressure (P=.0.0mbar) and inter electrode distance (d=4 cm) at different applied voltage for both pin cathode system and plate anode and comparison with experimental results.
In the present work, a d.c. magnetron sputtering system was designed and fabricated. The chamber of this system was includes from two copper coaxial cylinders where the inner one used as a cathode (target) while the outer one used as the anode with Solenoid magnetic coil located on the outer cylinder (anode). The axial profile of magnetic field for various coil current (from 2A to 14 A) are shown. The plasma characteristics in the normal glow discharge region are diagnostics by the 2.2mm diameter Langmuir probe with different length along the cathode and located at different radial positions 1cm and 2cm from the cathode surface. The result of this work shows that, the electron energy distributions at different radial positions along the
... Show MoreIn this research, Argon gas was used to generate atmospheric plasma in the manufacture of platinum nanomaterials, to study the resultant plasma spectrum and to calculate the cellular toxicity of those manufactured nanomaterials. This research is keen on the generation of nonthermal atmospheric pressure plasma using aqueous platinum salts (H2PtCl6 6H2O) with different concentrations and exposure of cold plasma with a different time period used to produce platinum nanoparticles, to ensure typical preparation of nanoparticles. Visible UV and X-rays were performed for this purpose, and the diameter of the system probe was (1[Formula: see text]mm) with the Argon gas flow of
... Show MoreCervical ectropion is considered to be a physiologic condition caused by columnar epithelium migration from the cervical canal into the vaginal portion of the cervix and usually there is no treatement for clinically asymptomatic cervical ectropion . Treatment can be achieved by thermal cauterization (Electrocautery), Cryosurgery or laser vaporization. Aim of the study: To study the effectiveness of CO2 laser (10600nm) in treatment of symptomatic cervical ectropion . Setting: The study was carried out at Laser Medicine Research Clinic at the Institute of Laser for Postgraduate Studies, University of Baghdad between the first of August 2013 to the end of October 2013. Patients and Methods: Ten female Patients with age range between 25-48 y
... Show More In this work a Nd:YVO4 thin disc laser setup is designed and fabricated. The disk laser system
is designed to be compact. The laser crystal was pumped by a 808 nm diode laser. The effect of input
current and pulse frequency on the output energy at pulse operation mode, and the effect of the input
current on the output power at CW mode operation are tested. At the pulsed mode, the output energy
increased linearly with the input current and decreased with pulse frequency. The threshold current
increased with increasing pulse frequency increasing. The maximum output energy from the thin disc
laser was 0.98 μJ at 1.3 kHz frequency, with 0.49A. A minimum threshold current for CW mode of
operation. The maximum outpu
In this work we study the influence of the laser pulse energy and ablation time on the aluminum nanoparticles productivity during nanosecond laser ablation of bulk aluminum immersed in liquid.
Aluminum nanoparticles were synthesized by pulsed laser ablation of Al targets in ethanol for 3-8 minutes using the 1064 nm wavelength of a Nd:YAG laser with energies of 300-500 mJ per pulse.The laser energy was varied between 300 and 500 mJ/pulse, whereas the ablation time was set to 5 minutes. UV-Visible absorption spectra was used for the characterization and comparison of products.
The research include a pulsed Nd: YAG Laser with (300µs) pulse duration in the TEM00 mode at (1.06µm) wavelength for energies between (0.5-3) J was employed to drill Brass material which is use in industrial applications. The process of drill was assisted by an electric field. This resulted in an increase in the hole aspect ratio by the value (45%) and decrease in the hole taper by the value (25%) of its value under ordinary drilling conditions using the same input energy.
In this work, the effect of atomic ratio on structural and optical properties of SnO2/In2O3 thin films prepared by pulsed laser deposition technique under vacuum and annealed at 573K in air has been studied. Atomic ratios from 0 to 100% have been used. X-ray diffraction analysis has been utilized to study the effect of atomic ratios on the phase change using XRD analyzer and the crystalline size and the lattice strain using Williamson-Hall relationship. It has been found that the ratio of 50% has the lowest crystallite size, which corresponds to the highest strain in the lattice. The energy gap has increased as the atomic ratio of indium oxide increased.