In this paper, the Mars orbital elements were calculated. These orbital elements—the major axis, the inclination (i), the longitude of the ascending node (W), the argument of the perigee (w), and the eccentricity (e)—are essential to knowing the size and shape of Mars' orbit. The quick basic program was used to calculate the orbital elements and distance of Mars from the Earth from 25/5/1950 over 10000 days. These were calculated using the empirical formula of Meeus, which depended on the Julian date, which slightly changed for 10000 days; Kepler's equation was solved to find Mars' position and its distance from the Sun. The ecliptic and equatorial coordinates of Mars were calculated. The distance between Mars and the center of the Earth, in astronomical units (A.U.), was calculated. RM-E(min) was found to be between 0.4763 and 0.5108, and RM-E(max) was found to be between 2.548 and 2.6259. Furthermore, the findings revealed that the Mars orbital elements have changed over time.
This paper deals with a new Henstock-Kurzweil integral in Banach Space with Bilinear triple n-tuple and integrator function Ψ which depends on multiple points in partition. Finally, exhibit standard results of Generalized Henstock - Kurzweil integral in the theory of integration.
A band rationing method is applied to calculate the salinity index (SI) and Normalized Multi-Band Drought Index (NMDI) as pre-processing to take Agriculture decision in these areas is presented. To separate the land from other features that exist in the scene, the classical classification method (Maximum likelihood classification) is used by classified the study area to multi classes (Healthy vegetation (HV), Grasslands (GL), Water (W), Urban (U), Bare Soil (BS)). A Landsat 8 satellite image of an area in the south of Iraq are used, where the land cover is classified according to indicator ranges for each (SI) and (NMDI).
Some new norms need to be adapted due to COVID-19 pandemic period where people need to wear masks, wash their hands frequently, maintain social distancing, and avoid going out unless necessary. Therefore, educational institutions were closed to minimize the spread of COVID-19. As a result of this, online education was adapted to substitute face-to-face learning. Therefore, this study aimed to assess the Malaysian university students’ adaptation to the new norms, knowledge and practices toward COVID-19, besides, their attitudes toward online learning. A convenient sampling technique was used to recruit 500 Malaysian university students from January to February 2021 through social media. For data collection, all students
... Show Moreتم التطرق في هذا البحث الى دور الذكاء الاصطناعي والتكنولوجيا الحديثة في العملية التدريبية بما يخدم أهدافه والاستفادة منه من خلال المخرجات الجيدة، حيث ان توظيف التكنولوجيا في تدريب رياضة المبارزة يسهل العملية التدريبية على المدرب واللاعب ويساهم في تقليل الجهد المبذول والوقت المستغرق ، وهدفت الدراسة الى التعرف على تأثير الجهاز المصنع في ضبط المسافة بين القدمين لدى عينة البحث ،استخدم المنهج التجريبي بت
... Show MoreThe mass attenuation coefficient for beta particles through pure Polyvinyl chloride (PVC) and flax fibers- reinforced PVC composite were investigated as a function of the absorber thickness and the absorber to source distance. The beta particles mass attenuation coefficients were obtained using a NaI(Tl) energy selective scintillation counter with 90Sr/ 90Y beta source having an energy range from (0.546-2.275) MeV. Pure PVC polymer samples were prepared by compacting the PVC powder in a mould at high pressure (10bar) and temperature about 140°C for 30 minutes. A hot press system was used for this process. The experimentally obtained values of mass attenuation coefficients for 90Sr and 90Y were found to be 7.72 cm2.g-1and 0.842 cm2.g-1 r
... Show MoreUtilizing the Turbo C programming language, the atmospheric earth model is created from sea level to 86 km. This model has been used to determine atmospheric Earth parameters in this study. Analytical derivations of these parameters are made using the balancing forces theory and the hydrostatic equation. The effects of altitude on density, pressure, temperature, gravitational acceleration, sound speed, scale height, and molecular weight are examined. The mass of the atmosphere is equal to about 50% between sea level and 5.5 km. g is equal to 9.65 m/s2 at 50 km altitude, which is 9% lower than 9.8 m/s2 at sea level. However, at 86 km altitude, g is close to 9.51 m/s2, which is close to 15% smaller than 9.8 m/s2. These resu
... Show MoreThis paper investigated in the numerical simulation model to calculate the Earth magnetic field components at north provinces of Najaf city (Longitude 44.316 o -44.3592o E and Latitude 32.0508o - 32.0256o N). The components of the Earth magnetic field (total intensity (F), horizontal intensity (H), declination (D), inclination (I), the north component(X), the east component(Y), and Down component(Z)) were found by using spherical harmonic world magnetic model (WMM2010). A great deal of anomaly has been discovered in all components of the Earth magnetic field at the selected region (Long. 44.345o-44.335o E, Lat.32.042o-32.032o N) using Kriging method.
... Show MoreThe main objective of this paper is to determine an acceptable value of eccentricity for the satellites in a Low Earth Orbit LEO that are affected by drag perturbation only. The method of converting the orbital elements into state vectors was presented. Perturbed equation of motion was numerically integrated using 4th order Runge-Kutta’s method and the perturbation in orbital elements for different altitudes and eccentricities were tested and analysed during 84.23 days. The results indicated to the value of semi major axis and eccentricity at altitude 200 km and eccentricity 0.001are more stable. As well, at altitude 600 km and eccentricity 0.01, but at 800 km a
The study presents the test results of stabilizing gypseous soil embankment obtained from
Al- Faluja university Campus at Al-Ramady province. The laboratory investigation was divided
into three phases, The physical and chemical properties, the optimum liquid asphalt (emulsion)
requirements (which are manufactured in Iraq) were determined by using one dimensional
unconfined compression strength test.in the first phase , The optimum fluid content was 11%
(6% of emulsion with 5% water content).. At phase two, the effect of Aeration technique was
investigated using both direct shear and permeability test. At phase three for the case of static
load , the pure soil embankment model under dry test condition was investigated