A metal-assisted chemical etching process employing p-type silicon wafers with varied etching durations is used to produce silicon nanowires. Silver nanoparticles prepared by chemical deposition are utilized as a catalyst in the formation of silicon nanowires. Images from field emission scanning electron microscopy confirmed that the diameter of SiNWs grows when the etching duration is increased. The photoelectrochemical cell's characteristics were investigated using p-type silicon nanowires as working electrodes. Linear sweep voltammetry (J-V) measurements on p-SiNWs confirmed that photocurrent density rose from 0.20 mA cm-2 to 0.92 mA cm-2 as the etching duration of prepared SiNWs increased from 15 to 30 min. The conversion efficiency (ƞ) was 0.47 for p-SiNWs prepared with a 15-minute etching time and 0.75 for p-SiNWs prepared with a 30-minute etching time. The cyclic voltammetry (CV) experiments performed at various scan rates validated the faradic behavior of p-SiNWS prepared for 15 and 30 min of etching. Because of the slow ion diffusion and the increased scanning rate, the capacitance decreased with increasing scanning rate. Mott-Schottky (M-S) investigation showed a significant carriers concentration of 3.66×1020 cm-3. According to the results of electrochemical impedance spectroscopy (EIS), the SiNWs photocathode prepared by etching for 30 min had a charge transfer resistance of 25.27 Ω, which is low enough to enhance interfacial charge transfer.
This paper presents an approach to license plate localization and recognition. A proposed method is designed to control the opening of door gate based on the recognition of the license plates number in Iraq. In general the system consists of four stages; Image capturing, License plate cropping, character segmentation and character recognition. In the first stage, the vehicle photo is taken from standard camera placed on the door gate with a specific distance from the front of vehicle to be processed by our system. Then, the detection method searches for the matching of the license plate in the image with a standard plate. The segmentation stage is performed by is using edge detection. Then character recognition, done by comparing with templ
... Show MoreThe purpose of this paper is to solve the stochastic demand for the unbalanced transport problem using heuristic algorithms to obtain the optimum solution, by minimizing the costs of transporting the gasoline product for the Oil Products Distribution Company of the Iraqi Ministry of Oil. The most important conclusions that were reached are the results prove the possibility of solving the random transportation problem when the demand is uncertain by the stochastic programming model. The most obvious finding to emerge from this work is that the genetic algorithm was able to address the problems of unbalanced transport, And the possibility of applying the model approved by the oil products distribution company in the Iraqi Ministry of Oil to m
... Show MoreWe present mid-infrared imaging observations of the debris disk around one of the main sequence star Epsilon Eridani in the Q-band at (20.5 µm) and (17.6 µm). The dust that produces emission in debris disk is spatially resolved in the inner region of the debris disk of Epsilon Eridani at distance approximately between 1.4 - 4 AU.
dictates the need to study the cultural aspects of the context and the consequent relations between the person and the objective environment surrounding him, as the philosophical understanding of the role of culture has led to the emergence of new theoretical interpretations of design that are organically linked with the development of society, especially that the development of the human environment philosophically and culturally is linked to the philosophical perception of its role in Culture as a precondition for new theoretical interpretations of design.
From the above, this problem can be studied by defining the following question (What are the implications of the cultural context in graphic design)?
The research included
Thermal evaporation method has used for depositing CdTe films
on corning glass slides under vacuum of about 10-5mbar. The
thicknesses of the prepared films are400 and 1000 nm. The prepared
films annealed at 573 K. The structural of CdTe powder and prepared
films investigated. The hopping and thermal energies of as deposited
and annealed CdTe films studied as a function of thickness. A
polycrystalline structure observed for CdTe powder and prepared
films. All prepared films are p-type semiconductor. The hopping
energy decreased as thickness increased, while thermal energy
increased.