Formation of Au–Ag–Cu ternary alloy nanoparticles (NPs) is of particular interest because this trimetallic system have miscible (Au–Ag and Au–Cu) and immiscible (Ag– Cu) system. So there is a possibility of phase segregation in this ternary system. At this challenge it was present attempts synthetic technique to generate such trimetallic alloy nanoparticles by exploding wire technique. The importance of preparing nanoparticles alloys in distilled water and in this technique makes the possibility of obtaining nanoparticles free of any additional chemical substance and makes it possible to be used in the treatment of cancer or diseases resulting from bacterial or virus with least toxic. In this work, three metals alloys Au-Ag-Cu nanoparticles (A, B, and C) were prepared by exploding wire with different ratio of each elements. A high purity wire with diameters (0.3mm) against plate of these alloys were held at 20V with respect to the wire achieving different currents of 75, 100 and 160 A in distilled water and then the size and a shape of the synthesized alloy nanoparticles modify by pulse laser with different energies, where the colloids of nanoparticles were exposed to one thousand pulses of 532 nm wavelengths per pulse from second harmonic Nd-YAG laser, after it has been focused by a lens with 15 cm focal length. The structural properties were studied using x-ray diffraction. It was found that alloy nanoparticles with crystalline structure identical with face center cubic (fcc) and there is a new phase was appear for the A alloy this phase have the name tetragonal AuCu. It can be concludes that electrical explosion wire in liquid medium (EEW) is promising technique for preparation metal alloy Au-Ag-Cu nanoparticles.
Modified algae with nano copper oxide (CuO) were used as adsorption media to remove tetracycline (TEC) from aqueous solutions. Functional groups, morphology, structure, and percentages of surfactants before and after adsorption were characterised through Fourier-transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). Several variables, including pH, connection time, dosage, initial concentrations, and temperature, were controlled to obtain the optimum condition. Thermodynamic studies, adsorption isotherm, and kinetics models were examined to describe and recognise the type of interactions involved. Resultantly, the best operation conditions were at pH 7, contact time
... Show MoreThe faujasite type Y zeolite catalyst was prepared from locally available kaolin. For prepared faujasite type NaY zeolite X-ray, FT-IR, BET pore volume and surface area, and silica/ alumina were determined. The Xray and FT-IR show the compatibility of prepared catalyst with the general structure of standard zeolite Y. BET test shows that the surface area and pore volume of prepared catalyst were 360 m2 /g and 0.39 cm3 /g respectively.
The prepared faujasite type NaY zeolite modified by exchanging sodium ion with ammonium ion using ammonium nitrate and then ammonium ion converted to hydrogen ion. The maximum sodium ion exchange with ammonium ion was 53.6%. The catalytic activity of prepared faujasite type NaY, NaNH4Y and NaHY zeolites
This work was conducted to study the ability of locally prepared Zeolite NaY for the reduction of sulfur compounds from Iraqi natural gas by a continuous mode adsorption unit. Zeolite Y was hydrothermally synthesized using abundant kaolin clay as aluminum precursor. Characterization was made using chemical analysis, XRD and BET surface area. Results of the adsorption experiments showed that zeolite Y is an active adsorbent for removal H2S from natural gas and other gas streams. The effect of temperature was found inversely related to the removal efficiency. Increasing bed height was found to increase the removal efficiency at constant flow rate of natural gas. The adsorption capacity was evaluated and its maximum uptake was 5.345 mg H2S/g z
... Show MoreThis work was conducted to study the ability of locally prepared Zeolite NaY for the reduction of sulfur compounds from Iraqi natural gas by a continuous mode adsorption unit. Zeolite Y was hydrothermally synthesized using abundant kaolin clay as aluminum precursor. Characterization was made using chemical analysis, XRD and BET surface area. Results of the adsorption experiments showed that zeolite Y is an active adsorbent for removal H2S from natural gas and other gas streams. The effect of temperature was found inversely related to the removal efficiency. Increasing bed height was found to increase the removal efficiency at constant flow rate of natural gas. The adsorption capacity was evaluated and its maximum uptake was 5.345 mg H2S/g z
... Show MoreThe central nervous system is the most important system and is very sensitive to any accidental infection during ontogenesis; it includes brain and spinal cord. The cerebellum is the second largest part of the brain after cerebrum and it’s very sensitive to the abnormal changes during the embryological development. This study was designed to investigate the effect of the maternal exposure of selected concentrations of suspension of nanoparticles on the ontogenesis of the rat cerebellum after embryos implanted in uterus. A total of 60 female pregnant rats were divided in to three groups, each contains 20 females. Group1 (G1) was treated orally with 2mg/kg /body weight (b. wt) of suspension of silver nanoparticles (Ag NPs). While group 2 (G
... Show MoreCancer disease has a complicated pathophysiology and is one of the major causes of death and morbidity. Classical cancer therapies include chemotherapy, radiation therapy, and immunotherapy. A typical treatment is chemotherapy, which delivers cytotoxic medications to patients to suppress the uncontrolled growth of cancerous cells. Conventional oral medication has a number of drawbacks, including a lack of selectivity, cytotoxicity, and multi-drug resistance, all of which offer significant obstacles to effective cancer treatment. Multidrug resistance (MDR) remains a major challenge for effective cancer chemotherapeutic interventions. The advent of nanotechnology approach has developed the field of tumor diagnosis and treatment. Cancer nanote
... Show MoreAir stripping for removal of Trichloroethylene (TCE), Chloroform (CF) and Dichloromethane (DCM) from water were studied in a bubble column (0.073 m inside dia. and 1.08 m height with several sampling ports). The contaminated water was prepared from deionized water and VOCs. The presence of VOCs in feed solution was single, binary or ternary components. They were diluted to the concentrations ranged between 50 mg/l to 250 mg/l. The experiments were carried out in batch experiments which regard the bubble column as stirred tank and only gas was bubbled through stationary liquid. In this case transient measurements of VOC concentration in the liquid phase and the measured concentra
... Show More