Tin dioxide (SnO2) were mixed with (TiO2 and CuO) with concentration ratio (50, 60, 70, 80 and 90) wt% films deposited on single crystal Si and glass substrates at (523 K) by spray pyrolysis technique from aqueous solutions containing tin (II) dichloride Dihydrate (SnCl2, 2H2O), dehydrate copper chloride (CuCl2.2H2O) and Titanium(III) chloride (TiCl3) with molarities (0.2 M). The results of electrical properties and analysis of gas sensing properties of films are presented in this report. Hall measurement showed that films were n-type converted to p- type as titanium and copper oxide added at (50) % ratio. The D.C conductivity measurements referred that there are two mechanisms responsible about the conductivity, hence it possess two activation energies. Maximum sensitivity 16 % obtained for sample (SnO2)40(TiO2: CuO) 60 toward (NH3) gas at the operating temperature (473 K), whereas faster response time and recovery time were 20 (s) for (SnO2) and (SnO2)20(TiO2:CuO)80 respectively.
Introduction: Cutaneous leishmaniasis is considered a parasitic contagion resulting from the flagellated parasite belonging to the genus of Leishmania. Also, cutaneous leishmaniasis is a zoonotic ailment transmitted through the bloodsucking sand-flies bite (belonging to the Phlebotomus genus). The disease's reservoirs included wild or semi-domesticated animals, in general rodents and dogs. Tissue inhibitor metalloproteinase-1 (TIMP-1) is one of the extracellular matrix proteins that have a role in vessel wall degeneration and aneurysm development. In addition, it belongs to the zinc-dependent endopeptidases family that are involved in the degradation of connective tissues proteins which are included in vascular integrity maintenance. The Ge
... Show MoreSingle mode-no core-single mode fiber structure with a section of tuned no-core fiber diameter to sense changes in relative humidity has been experimentally demonstrated. The sensor performance with tuned NCF diameter was investigated to maximize the evanescent fields. Different tuned diameters of of (100, 80, and 60)μm were obtained by chemical etching process based on hydrofluoric acid immersion. The highest wavelength sensitivity was obtained 184.57 pm/RH% in the RH range of 30% –100% when the no-core fiber diameter diameter was 60 μm and the sensor response was in real-time measurements
Abstract
The fiber Bragg grating (FBG) technology has been rapidly applied in the sensing technology field. In this work, uniform FBG was used as pressure sensor based on measuring related Bragg wavelength shift. The pressure was applied directly by air compressor to the sensor and the pressure was ranged from 1 to 6 bar.
This sensor also was affected by the external temperature so as a result it could be used as a temperature sensor. This sensor could be used to monitor the pressure of dams. It has been shown from the result that the sensor is very sensitive to the pressure and the sensitivity was (67 pm\bar) and is very sensitive to temperature and the sensitivity was (10p
... Show MoreCadmium Oxide and Bi doped Cadmium Oxide thin films are prepared by using the chemical spray pyrolysis technique a glass substrate at a temperature of (400?C) with volumetric concentration (2,4)%. The thickness of all prepared films is about (400±20) nm. Transmittance and Absorbance spectra are recorded in the wave length ranged (400-800) nm. The nature of electronic transitions is determined, it is found out that these films have directly allowed transition with an optical energy gap of (2.37( eV for CdO and ) 2.59, 2.62) eV for (2% ,4%) Bi doped CdO respectively. The optical constants have been evaluated before and after doping.
A random laser is a non-conventional laser whose feedback mechanism is based on dissorder-induced light. However, random lasers occur in gain media with numerous scatterers and produce coherent laser emission without any predesigned cavity. The generation of coherent emission from multiple scattering is quite general and its basic principles are shown here using sulforhodamine B-TiO suspensions system. These suspensions were pumped with 337.1 nm pulses from N2 laser and the spectral and temporal behavior of light emitted from the pumped surface was recorded. When we pump power above a certain threshold a dramatic narrowing of the emission line width and a shortening of the emitted pulses were observed. We have experimentally found that i
... Show MoreThin films of cadmium sulphoselenide (CdSSe) have been prepared by a thermal evaporation method on glass substrate, and with pressure of 4x10-5 mbar. The optical constants such as (refractive index n, dielectric constant ?i,r and Extinction coefficient ?) of the deposition films were obtained from the analysis of the experimental recorded transmittance spectral data. The optical band gap of (CdSSe) films is calculate from (?h?)2 vs. photon energy curve. CdSSe films have a direct energy gap, and the values of the energy gap were found to increase when increasing annealing temperature. The band gap of the films varies from 1.68 – 2.39 eV.
The study effect Graphene on optical and electrical properties of glass prepared on glass substrates using sol–gel dip-coating technique. The deposited film of about (60-100±5%) nm thick. Optical and electrical properties of the films were studied under different preparation conditions, such as graphene concentration of 2, 4, 6 and 8 wt%. The results show that the optical band gap for glass-graphene films decreasing after adding the graphene. Calculated optical constants, such as transmittance, extinction coefficient are changing after adding graphene. The structural morphology and composition of elements for the samples have been demonstrated using SEM and EDX. The electrical properties of films include DC electrical conductivity; we
... Show More
