In the present work, it had been measured the concentration of radon gas (CRn) for (10) samples of cement used in constructions before and after painting them using enamel paint, purchased from the local markets, to see the extent of its ability to reduce emissions of Rn-222 in the air. These samples were obtained from different sources available in the local markets in Baghdad and other provinces. The measurements were done by the American-made detector (RAD7). The results showed that the highest CRn in the air emitted from cement samples after coating was in the cement sample (Iranian origin) where the concentration was (58.27 Bq/m3) while the lowest CRn was found in building material samples in the white cement sample (Turkish origin) was (15.74 Bq/m3). In view of the present results, it has been confirmed that the concentration of Rn-222 emitted into the air in all building material samples is below the agency's permissible limit (ICRP).
The aim of this work was to estimate the concentrations of natural and artificial nuclides in some fertilized and unfertilized plant samples. These samples were collected and prepared in a petri dish for the measurements using gamma spectroscopy. The average values of 238U, 232Th, 40K, and 137Cs for the unfertilized plant samples were (11.964 ± 3.226, 8.273 ± 2.639, 402.436 ± 18.099, and 2.761 ± 1.613) respectively, and for the fertilized plant samples were (30.434 ± 5.282, 22.584 ± 4.620, 711.332 ± 25.806, and 6.986 ± 2.542) respectively. The average values of radiological hazard indices, Raeq, D, D for 137Cs, (AEDE)in, (AEDE)out, Iγ, Hin, and Hout for the unfertilized plant samples were (54.782 ± 7.216, 27.306, 0.469, 0.
... Show MoreThe successful implementation of deep learning nets opens up possibilities for various applications in viticulture, including disease detection, plant health monitoring, and grapevine variety identification. With the progressive advancements in the domain of deep learning, further advancements and refinements in the models and datasets can be expected, potentially leading to even more accurate and efficient classification systems for grapevine leaves and beyond. Overall, this research provides valuable insights into the potential of deep learning for agricultural applications and paves the way for future studies in this domain. This work employs a convolutional neural network (CNN)-based architecture to perform grapevine leaf image classifi
... Show MoreWellbore instability and sand production onset modeling are very affected by Sonic Shear Wave Time (SSW). In any field, SSW is not available for all wells due to the high cost of measuring. Many authors developed empirical correlations using information from selected worldwide fields for SSW prediction. Recently, researchers have used different Artificial Intelligence methods for estimating SSW. Three existing empirical correlations of Carroll, Freund, and Brocher are used to estimate SSW in this paper, while a fourth new empirical correlation is established. For comparing with the empirical correlation results, another study's Artificial Neural Network (ANN) was used. The same data t
... Show MoreIn the present work, a closed loop circulation system consist of three testing sections was designed and constructed. The testing sections made from (3m) of commercial carbon steel pipe of diameters(5.08, 2.54 and 1.91 cm) . Anionic surfactant (SDBS )with concentrations of (50, 100, 150, 200 and 250 ppm) was tested as a drag reducing agent. The additive(SDBS)studied using crude oil from south of Iraq. The flow rates of crude oil were used in 5.08 and 2.54 cm I.D. pipes are (1 - 12) m3/hr while (1-6) m3/hr were used in 1.91 cm J .D. pipe . Percentage drag reduction (%Dr) was found to increase by increasing solution velocity, pipe diameter and additives concentration (i.e. increasi
... Show MoreBackground: Consideration of mandibular third molar is important from orthodontic perspective due to several factors such as, lower anterior arch crowding, relapse in lower anterior region, interference with uprighting of mandibular first and second molars during anchorage preparation and molar distalization. The aims of this study were to assess of gender differences in the mandibular third molar position and compare and evaluate whether there is any differences in the results provided by CT scan and lateral reconstructed radiograph. Materials and Methods: The sample of present study consisted of 39 patients (18 males and 21 females) with age range 11-15 years. CT images for patients who were attending at Al Suwayra General Hospital/the C
... Show MoreThe current study presents the simulative study and evaluation of MANET mobility models over UDP traffic pattern to determine the effects of this traffic pattern on mobility models in MANET which is implemented in NS-2.35 according to various performance metri (Throughput, AED (Average End-2-end Delay), drop packets, NRL (Normalize Routing Load) and PDF (Packet Delivery Fraction)) with various parameters such as different velocities, different environment areas, different number of nodes, different traffic rates, different traffic sources, different pause times and different simulation times . A routing protocol.…was exploited AODV(Adhoc On demand Distance Vector) and RWP (Random Waypoint), GMM (Gauss Markov Model), RPGM (Refere
... Show MoreThe goal of our study is to perform detailed multiband surface photometry of the spiral galaxy NGC 4448 and its brightest star-forming regions. The structure and composition of the stellar population in the surface brightness galaxy NGC 4448 was studied using BVR CCD photometry. The observations were obtained on the 1.88 m optical telescope of Kottamia Astronomical Observatory (KAO), Egypt. A two-dimensional decomposition of the galaxy bulge and disk components is carried out. A powerful star forming region is observed near the galactic center. Based on the positions of the various components of the galaxy in two color diagrams. From the observations, the surface brightness profiles, Ellipticity profiles, position angle profiles and colo
... Show More