In this study, titanium dioxide (TiO2) nanoparticles incorporated with cement were synthesis by a simple casting method as a function concentration of TiO2 (0.2, 0.4, 0.8, 1, and 2 wt%). The prepared samples were characterized using the technique of Field Emission Scanning Electron Microscope (FESEM) and UV-Visible spectrophotometer, which was used to measure the adsorption spectra. The observed photocatalytic efficiency of TiO2 nanoparticles (NP) incorporated with cement was investigated by decomposing the dye methyl blue (MB) solution under sunlight irradiation. According to the slope, the value of the k constant at the best sample is 0.8wt%, k=0.8265 min-1. FESEM image of the TiO2/cement with 0.8 wt% content show the TiO2 NPs were well-attached to cement particles, and they covered the cement surface. The increase in photocatalytic (PC) activity was due to an increase of TiO2 concentration in the cement, which best occur of 0.8 wt% of TiO2 in cement. The degradation at the MB (5ppm) was 98.864 % after 120 min under sunlight irradiation. The method involves easily and simply preparing TiO2/cement that is used in self-cleaning and studying the effect of different festive factors, including the concentration of the dye. The preparation of TiO2/cement was successful as a photocatalyst for a self-cleaning surface.
A critical milestone in nano-biotechnology is establishing reliable and ecological friendly methods for fabricating metal oxide NPs. Because of their great biodegradable, electrical, mechanical, and optical qualities, zirconia NPs (ZrO2NPs) attract much interest among all zirconia NPs (ZrO2NPs). Zirconium oxide (ZrO2) has piqued the interest of researchers throughout the world, particularly since the development of methods for the manufacture of nano-sized particles. An extensive study into the creation of nanoparticles utilizing various synthetic techniques and their potential uses has been stimulated by their high luminous efficiency, wide bandgap, and high exciton binding energy. Zirconium dioxide nano
... Show MoreThe dual nature of asphalt binder necessitates improvements to mitigate rutting and fatigue since it performs as an elastic material under the regime of rapid loading or cold temperatures and as a viscous fluid at elevated temperatures. The present investigation assesses the effectiveness of Nano Alumina (NA), Nano Silica (NS), and Nano Titanium Dioxide (NT) at weight percentages of 0, 2, 4, 6, and 8% in asphalt cement to enhance both asphalt binder and mixture performance. Binder evaluations include tests for consistency, thermal susceptibility, aging, and workability, while mixture assessments focus on Marshall properties, moisture susceptibility, resilient modulus, permanent deformation, and fatigue characteristics. NS notably im
... Show MoreThe dual nature of asphalt binder necessitates improvements to mitigate rutting and fatigue since it performs as an elastic material under the regime of rapid loading or cold temperatures and as a viscous fluid at elevated temperatures. The present investigation assesses the effectiveness of Nano Alumina (NA), Nano Silica (NS), and Nano Titanium Dioxide (NT) at weight percentages of 0, 2, 4, 6, and 8% in asphalt cement to enhance both asphalt binder and mixture performance. Binder evaluations include tests for consistency, thermal susceptibility, aging, and workability, while mixture assessments focus on Marshall properties, moisture susceptibility, resilient modulus, permanent deformation, and fatigue characteristics. NS notably im
... Show MoreBackground: Successful root canal therapy depends on thorough chemo mechanical debridement of pulpal tissue, dentin debris and infective microorganisms. Objective: This study aimed to investigate the antibacterial effect of silver nanoparticles, sodium hypochlorite and chlorhexidine in reducing the bacterial infection of the root canals. Materials and Methods: The root canals of 55 single-rooted teeth were cleaned, shaped, and sterilized. All the teeth samples were inoculated with Enterococcus faecalis and incubated at 37°C for 2 weeks. Then, the teeth were divided into four groups. Group I (n=15): 100 ppm silver nanoparticles, Group II (n=15): 2.5 sodium hypochlorite, Group III (n=15): 2% chlorhexidine, IV (n=10): Normal saline as a contr
... Show MoreIn recent years, infectious diseases are increasingly being encountered in clinical settings. Due to the development of antibiotic resistance and the outbreak of these diseases caused by resistant pathogenic bacteria, the pharmaceutical companies and the researchers are now searching for new unconventional antibacterial agents. Recently, in this field, the application of nanoparticles is an emerging area of nanoscience and nanotechnology. For this reason, nanotechnology has a great deal of attention from the scientific community and may provide solutions to technological and environmental challenges. A common feature that these nanoparticles exhibit their antimicrobial behavior against pathogenic bacteria. In this report, we evaluate
... Show MoreRoller Compacted Concrete is a type of concrete that is environmentally friendly and more economical than traditional concrete. Roller Compacted Concrete is typically used for heavy-duty and specialist constructions, such as hydraulic structures and pavements, because of its coarse surface. The main difference between RCC and conventional concrete mixtures is that RCC has a more significant proportion of fine aggregates that allow compaction and tight packing. In recent years, it has been estimated that several million tons of waste demolished material (WDM) produced each year are directed to landfills worldwide without being recycled for disposal. This review aimed to study the literature about creating a Roller-Comp
... Show More