In this study, titanium dioxide (TiO2) nanoparticles incorporated with cement were synthesis by a simple casting method as a function concentration of TiO2 (0.2, 0.4, 0.8, 1, and 2 wt%). The prepared samples were characterized using the technique of Field Emission Scanning Electron Microscope (FESEM) and UV-Visible spectrophotometer, which was used to measure the adsorption spectra. The observed photocatalytic efficiency of TiO2 nanoparticles (NP) incorporated with cement was investigated by decomposing the dye methyl blue (MB) solution under sunlight irradiation. According to the slope, the value of the k constant at the best sample is 0.8wt%, k=0.8265 min-1. FESEM image of the TiO2/cement with 0.8 wt% content show the TiO2 NPs were well-attached to cement particles, and they covered the cement surface. The increase in photocatalytic (PC) activity was due to an increase of TiO2 concentration in the cement, which best occur of 0.8 wt% of TiO2 in cement. The degradation at the MB (5ppm) was 98.864 % after 120 min under sunlight irradiation. The method involves easily and simply preparing TiO2/cement that is used in self-cleaning and studying the effect of different festive factors, including the concentration of the dye. The preparation of TiO2/cement was successful as a photocatalyst for a self-cleaning surface.
The current study focuses on utilizing artificial intelligence (AI) techniques to identify the optimal locations of production wells and types for achieving the production company’s primary objective, which is to increase oil production from the Sa’di carbonate reservoir of the Halfaya oil field in southeast Iraq, with the determination of the optimal scenario of various designs for production wells, which include vertical, horizontal, multi-horizontal, and fishbone lateral wells, for all reservoir production layers. Artificial neural network tool was used to identify the optimal locations for obtaining the highest production from the reservoir layers and the optimal well type. Fo
The antagonism of the rhizospheric bacteria toward pathogenic fungi Macrophomina phaseolina was investigated. Ten soil samples were collected from the rhizospheric zone around Cowpea root (Vignaunguiculata L.). These samples were used as the source of Arbuscular Mycorrhizal fungi (AMF) and rhizobacterial isolates. Twenty-five bacteria were isolated and evaluated as an antagonistic agent against pathogenic fungi. M. phaseolina was isolated from infected roots of Cowpea and used as a pathogen. Twenty-five bacteria were isolated and evaluated as an antagonistic agent against pathogenic fungi. M. phaseolina was isolated from infected roots of Cowpea and used as a pathogen. The synergistic effect between A. siccitolerans and (AMF) Glomusmosseae,
... Show MoreGroundwater quality investigation has been carried out in the western part of Iraq (west longitude '40°40). The physicochemical analyses of 64 groundwater samples collected from seven aquifers were used in the determination of groundwater characterization and assessment. The concept of spatial hydrochemical bi-model was prepared for quantitative and qualitative interpretation. Hydrogeochemical data referred that the groundwater is of meteoric origin and has processes responsible for observed brackishness. The geochemical facies of the groundwater reveal that none of the anions and cations pairs exceed 50% and there are practically mixtures of multi-water types (such as Ca–Mg–Cl–HCO3 and Na+K–SO4–Cl water type) as do
... Show MoreMicrofluidic devices provide distinct benefits for developing effective drug assays and screening. The microfluidic platforms may provide a faster and less expensive alternative. Fluids are contained in devices with considerable micrometer-scale dimensions. Owing to this tight restriction, drug assay quantities are minute (milliliters to femtoliters). In this research, a microfluidic chip consisting of micro-channels carved on substrate materials built using an Acrylic (Polymethyl Methacrylate, PMMA) chip was designed using a Carbon Dioxide (CO2) laser machine. The CO2 parameters influence the chip’s width, depth, and roughness. To have a regular channel surface, and low roughness, the laser power (60 W), with scanning speed (250 m/s)
... Show MoreThe two parameters of Exponential-Rayleigh distribution were estimated using the maximum likelihood estimation method (MLE) for progressively censoring data. To find estimated values for these two scale parameters using real data for COVID-19 which was taken from the Iraqi Ministry of Health and Environment, AL-Karkh General Hospital. Then the Chi-square test was utilized to determine if the sample (data) corresponded with the Exponential-Rayleigh distribution (ER). Employing the nonlinear membership function (s-function) to find fuzzy numbers for these parameters estimators. Then utilizing the ranking function transforms the fuzzy numbers into crisp numbers. Finally, using mean square error (MSE) to compare the outcomes of the survival
... Show MoreVisible-light photodetectors constructed Fe2O3 were manufactured effectively concluded chemical precipitation technique, films deposited on glass substrate and Si wafer below diverse dopant (0,2,4,6)% of Cl, enhancement in intensity with X-ray diffraction analysis was showed through favored orientation along the (110) plane, the optical measurement presented direct allowed with reduced band gap energies thru variation doping ratio , current–voltage characteristics Fe2O3 /p-Si heterojunction revealed respectable correcting performance in dark, amplified by way of intensity of incident light, moreover good photodetector properties with enhancement in responsivity occurred at wavelength between 400 nm and 470 nm.
Encasing glass fiber reinforced polymer (GFRP) beam with reinforced concrete (RC) improves stability, prevents buckling of the web, and enhances the fire resistance efficiency. This paper provides experimental and numerical investigations on the flexural performance of RC specimens composite with encased pultruded GFRP I-sections. The effect of using shear studs to improve the composite interaction between the GFRP beam and concrete was explored. Three specimens were tested under three-point loading. The deformations, strains in the GFRP beams, and slippages between the GFRP beams and concrete were recorded. The embedded GFRP beam enhanced the peak loads by 65% and 51% for the composite specimens with and without shear connectors,
... Show MoreThe prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices
... Show More