In this study, mean free path and positron elastic-inelastic scattering are modeled for the elements hydrogen (H), carbon (C), nitrogen (N), oxygen (O), phosphorus (P), sulfur (S), chlorine (Cl), potassium (K) and iodine (I). Despite the enormous amounts of data required, the Monte Carlo (MC) method was applied, allowing for a very accurate simulation of positron interaction collisions in live cells. Here, the MC simulation of the interaction of positrons was reported with breast, liver, and thyroid at normal incidence angles, with energies ranging from 45 eV to 0.2 MeV. The model provides a straightforward analytic formula for the random sampling of positron scattering. ICRU44 was used to compile the elemental composition data. In this work, elastic cross sections (ECS) and inelastic cross-sections (ICS) for positron interaction in human tissues were studied. The elastic scattering is obtained from the Rutherford differential cross-section. Gryzinski's excitation function is used within the first-born approximation to determine the core and valence of ICS. The results are presented graphically. The ECS increases rapidly as the scattering energy approaches zero and becomes dependent on the atomic number of elements in organs. The ICS has reached a maximum value of around 100 eV. Increasing positron energy leads to an increase in the elastic and inelastic mean free paths. The simulations agree with many other studies dealing with the same parameters and conditions.
In this study, the modified size-strain plot (SSP) method was used to analyze the x-ray diffraction lines pattern of diffraction lines (1 0 1), (1 2 1), (2 0 2), (0 4 2), (2 4 2) for the calcium titanate(CaTiO3) nanoparticles, and to calculate lattice strain, crystallite size, stress, and energy density, using three models: uniform (USDM). With a lattice strain of (2.147201889), a stress of (0.267452615X10), and an energy density of (2.900651X10-3 KJ/m3), the crystallite was 32.29477611 nm in size, and to calculate lattice strain of Scherrer (4.1644598X10−3), and (1.509066023X10−6 KJ/m3), a stress of(6.403949183X10−4MPa) and (26.019894 nm).
طريقة سهلة وبسيطة ودقيقة لتقدير السبروفلوكساسين في وجود السيفاليكسين او العكس بالعكس في خليط منهما. طبقت الطريقة المقترحة بطريقة الاضافة القياسية لنقطة بنجاح في تقدير السبروفلوكساسين بوجود السيفاليكسين كمتداخل عند الاطوال الموجية 240-272.3 نانوميتر وبتراكيز مختلفة من السبروفلوكساسين 4-18 مايكروغرام . مل-1 وكذلك تقدير السيفاليكسين بوجود السبروفلوكساسين الذي يتداخل باطوال موجية 262-285.7 نانوميتر وبتراكيز مخ
... Show MoreThe effect of laser radiation on human aorta, coronary, and pulmonary arteries, and pulmonary veins has been investigated. Xenon-Chloride (eximer), Nitrogen, and Nd-YAG pulsed lasers of wavelengths 308, 337, and 1060 nm respectively were used. Their effects on fresh postmortem tissues, normal and diseased, was studied. The diameter and depth of ablation of the exposed tissues, in air, were measured as a function of many factors related to the type of laser and nature of the tissue. The effect of properties of the applied lasers, such as average power density and deposited energy density, on the exposed tissue surface were studied. The increase of these two parameters cause an increase in the depth and diameter of ablation. However the di
... Show MoreThis paper is concerned with the numerical solutions of the vorticity transport equation (VTE) in two-dimensional space with homogenous Dirichlet boundary conditions. Namely, for this problem, the Crank-Nicolson finite difference equation is derived. In addition, the consistency and stability of the Crank-Nicolson method are studied. Moreover, a numerical experiment is considered to study the convergence of the Crank-Nicolson scheme and to visualize the discrete graphs for the vorticity and stream functions. The analytical result shows that the proposed scheme is consistent, whereas the numerical results show that the solutions are stable with small space-steps and at any time levels.
This paper considers a new Double Integral transform called Double Sumudu-Elzaki transform DSET. The combining of the DSET with a semi-analytical method, namely the variational iteration method DSETVIM, to arrive numerical solution of nonlinear PDEs of Fractional Order derivatives. The proposed dual method property decreases the number of calculations required, so combining these two methods leads to calculating the solution's speed. The suggested technique is tested on four problems. The results demonstrated that solving these types of equations using the DSETVIM was more advantageous and efficient
This paper considers a new Double Integral transform called Double Sumudu-Elzaki transform DSET. The combining of the DSET with a semi-analytical method, namely the variational iteration method DSETVIM, to arrive numerical solution of nonlinear PDEs of Fractional Order derivatives. The proposed dual method property decreases the number of calculations required, so combining these two methods leads to calculating the solution's speed. The suggested technique is tested on four problems. The results demonstrated that solving these types of equations using the DSETVIM was more advantageous and efficient
سها علي حسين, هويدة إسماعيل إبراهيم, Journal of Physical Education, 2017 - Cited by 1
The study aimed to evaluate the benefits of transferrin saturation percentage (TSAT) and serum ferritin in assessing body iron status, which can influence erythropoietin treatment in patients with ESRD. Forty end-stage renal disease patients on regular hemodialysis participated in this study. Clinical data were obtained. Serum iron, total iron binding capacity, transferrin saturation, ferritin, albumin, creatinine, and C-reactive protein were investigated. Thirty healthy people were enrolled as a control group. ESRD patients had a mean age of 45.1±13.9 years, with 60% being males. They exhibited significantly lower hematocrit (25.3±6.5%), and higher platelet (285.7±148.1x10^9/L) and WBC (9.4±3.1x10^9/L) counts compared to healthy contro
... Show More