In this study, mean free path and positron elastic-inelastic scattering are modeled for the elements hydrogen (H), carbon (C), nitrogen (N), oxygen (O), phosphorus (P), sulfur (S), chlorine (Cl), potassium (K) and iodine (I). Despite the enormous amounts of data required, the Monte Carlo (MC) method was applied, allowing for a very accurate simulation of positron interaction collisions in live cells. Here, the MC simulation of the interaction of positrons was reported with breast, liver, and thyroid at normal incidence angles, with energies ranging from 45 eV to 0.2 MeV. The model provides a straightforward analytic formula for the random sampling of positron scattering. ICRU44 was used to compile the elemental composition data. In this work, elastic cross sections (ECS) and inelastic cross-sections (ICS) for positron interaction in human tissues were studied. The elastic scattering is obtained from the Rutherford differential cross-section. Gryzinski's excitation function is used within the first-born approximation to determine the core and valence of ICS. The results are presented graphically. The ECS increases rapidly as the scattering energy approaches zero and becomes dependent on the atomic number of elements in organs. The ICS has reached a maximum value of around 100 eV. Increasing positron energy leads to an increase in the elastic and inelastic mean free paths. The simulations agree with many other studies dealing with the same parameters and conditions.
In this paper, we will provide a proposed method to estimate missing values for the Explanatory variables for Non-Parametric Multiple Regression Model and compare it with the Imputation Arithmetic mean Method, The basis of the idea of this method was based on how to employ the causal relationship between the variables in finding an efficient estimate of the missing value, we rely on the use of the Kernel estimate by Nadaraya – Watson Estimator , and on Least Squared Cross Validation (LSCV) to estimate the Bandwidth, and we use the simulation study to compare between the two methods.
Background: Congenital club foot is a complex deformity of foot .It is a collection of different abnormalities, with different etiologies. Consequently, Severity varies with difficulties in evaluating treatment strategies with outcome results. The treatment of congenital club foot remains controversial. Usually, the orthopedist's goal is to obtain anatomically and functionally normal feet in all patients. Objective: To asses short term follow up result of conservatively treated club feet in relation to the age of initial casting by Ponseti technique. Methods :A cross sectional observational study with some comparative content done in Al-kindy
... Show MoreDeep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to
... Show More