Poly [2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinyl] (MEH-PPV) thin films were created in this study using both spin coating and drop casting processes. MEH-PPV thin films generated by Ferric Chloride (FeCl3) doping (0.03, 0.06, 0.09, and 0.12 wt%) were studied for some physical features using Fourier-Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FE-SEM), and Energy Dispersive X-ray Spectroscopy (EDX). An FTIR test showed that there was no chemical reaction that occurred between Ferric Chloride (FeCl3) and MEH-PPV, but rather a physical one, that is, an organic material composite occurred. As for FE-SEM, the pure sample MEH-PPV formed uniformly, but when FeCl3 was added by weight, we have different circles that indicate the formation of adsorption energy and that the highest adsorption energy appears at MEH-PPV/FeCl3 (0.06%), as well as EDX, which indicates the absence of undesirable elements and indicates the presence of small peaks for iron (Fe) and chlorine (Cl). Peaks of carbon(C) and oxygen (O) types indicate the presence of the chemical elements of MEH-PPV.
In the present work, a first-row divalent d-transition metal obtained from curcumin(Curc) and L-3,4-dihydroxyphenylalanin(L-dopa)have been synthesized which their complexes and characterized by C.H.N, conductance, spectral methods: FT-IR, Ultra–Visible. Magneto-chemical measurements, molar conductance ΛM (1×10−3 mol/L in DMSO):36- 0.84 ohm-1.cm2.mol-1 (non-electrolyte). The data shows that the complexes have the structure [M((II))-(Curc)-(L-dopa)] system. Electronic and magnetic data suggest an octahedral geometry for all complexes in which the (L-dopa) and curcumin act as bidentate ligands. Curcumin coordinated to the metal ions M (II) through the lone pair of electrons of oxygen in 2(C=O) groups. The (L-dopa) coordinated to M (II) a
... Show MoreIn the present work, a first-row divalent d-transition metal obtained from curcumin(Curc) and L-3,4-dihydroxyphenylalanin(L-dopa)have been synthesized which their complexes and characterized by C.H.N, conductance, spectral methods: FT-IR, Ultra–Visible. Magneto-chemical measurements, molar conductance ΛM (1×10−3 mol/L in DMSO):36- 0.84 ohm-1.cm2.mol-1 (non-electrolyte).
The data shows that the complexes have the structure [M((II))-(Curc)-(L-dopa)] system. Electronic and magnetic data suggest an octahedral geometry for all complexes in which the (L-dopa) and curcumin act as bidentate ligands.
Curcumin coordinated to the metal ions M (II) through the lone pair of el
... Show More In this research we prepared thin films from pure polymer (polyvinyl alcohol PVA )and doped with CuO with concentration 8% ,and Fe2Cl3 at different concentrations (1,5,8)%.This films were prepared by casting method and placed in Britidish (4cm diameter )with thickness(200±5)μm.Through the investigation of(X-ray )diffraction it is found all that the samples have polycrystalline structure .Also we measurement the optical properties from this films such as absorption ,transmittion spectra ,absorption coefficient ,energy gap ,extinction coefficient ,refraction index ,finesse coefficient ,the dielectric constant with two parts the real and the imaginary and the optical conductivity .
In this study, pure Co3O4 nano structure and doping with 4 %, and
6 % of Yttrium is successfully synthesized by hydrothermal method.
The XRD examination, optical, electrical and photo sensing
properties have been studied for pure and doped Co3O4 thin films.
The X-ray diffraction (XRD) analysis shows that all films are
polycrystalline in nature, having cubic structure.
The optical properties indication that the optical energy gap follows
allowed direct electronic transition calculated using Tauc equation
and it increases for doped Co3O4. The photo sensing properties of
thin films are studied as a function of time at different wavelengths to
find the sensitivity for these lights.
High photo sensitivity dope
The poly(ethylene oxide) polymer (PEO) is doped with fine powder of MnCl2 salt and thin films of thickness (50–150 mm) with salt content (0, 5, 10, 15, and 20 wt%) are obtained. The AC electrical conductivity and dielectric constants are studied as a function of temperature through an impedance technique. It is found that AC conductivity increases and the calculated activation energy decreases with increasing temperature due to enhancement of the ionic conduction in the film bulk. The dielectric constants of the doped membranes increase with temperature. It is found that the peak value of the tanloss is shifted to a higher frequency at higher temperatures. The dielectric behavior is explained on the basis of
... Show MoreThe Sr doped La1Ba1-xSrx Ca2Cu4O8.5+δ samples with 0 ≤ x ≤ 0.3 had been prepared using the solid state reaction. The samples were claimed at 800°C for 3hr, palletized and sintered at 860°C for 20hr in air . Dielectric constant and loss by means of capacitance have been investigated with frequencies in the range of 1kHZ to 1MHZ for our samples at room temperature. Also, Shore hardness has been measured. The dielectric constant and loss decrease slightly with the increase of frequency for all compounds. Additionally, the partial substitution of Sr+2 into Ba+2 sites never have effect on the dielectric properties. X-ray diffraction (XRD) analysis showed a tetragonal structure and the
... Show MoreNanoferrite materials have been synthesized by sol-gel auto combustion method. The effect of doping different percentages of Y2O3 (0.34 µm) on the physical and mechanical properties of selected mixed ferrite [(Li2.5Fe0.5) 0.9(Co4Fe2O4) 0.1] by adding 10% Cobalt ferrite was studied. Physical properties (i.e. .density, porosity and water absorption) were affected by the doping, where the density increased about 32% at 6 wt% Y2O3, while porosity has a drastically decreased about 80% at 6% Y2O3 and has a correlation effect on the mechanical properties(Splitting tensile strength and Vicker
... Show MoreAbstract
Stainless steel (AISI 304) has good electrical and thermal conductivities, good corrosion resistance at ambient temperature, apart from these it is cheap and abundantly available; but has good mechanical properties such as hardness. To improve the hardness and corrosion resistance of stainless steel its surface can be modified by developing nanocomposite coatings applied on its surface. The main objective of this paper is to study effect of electroco-deposition method on microhardness and corrosion resistance of stainless steel, and to analyze effect of nanoparticles (Al2O3, ZrO2 , and SiC) on properties of composite coatings. I
... Show More