The duration of sunshine is one of the important indicators and one of the variables for measuring the amount of solar radiation collected in a particular area. Duration of solar brightness has been used to study atmospheric energy balance, sustainable development, ecosystem evolution and climate change. Predicting the average values of sunshine duration (SD) for Duhok city, Iraq on a daily basis using the approach of artificial neural network (ANN) is the focus of this paper. Many different ANN models with different input variables were used in the prediction processes. The daily average of the month, average temperature, maximum temperature, minimum temperature, relative humidity, wind direction, cloud level and atmospheric pressure were used as input parameters in order to obtain the daily average of sunshine duration (SD) as the output. The eight-year data were divided into two categories. The first category covers whole years (annually) and the second category is seasonal. To recognize and assess the influence of different input parameters on sunshine duration, six models of ANN have been evolved. The findings showed that in the annual models, the outcomes of RMSE, MAE and R for the model with input parameters (Month, Cloud Level and Average Temperature) were the best results 1.82, 1.175 and 0.89, respectively. As for the season models, the outcomes of RMSE, MAE and R for the autumn season were the best results 1.450, 1.009 and 0.94, respectively. Accordingly, the performance of the artificial neural network is considerably effective in predicting the sunshine duration.
The present work aimed to make a comparative investigation between three different ionospheric models: IRI-2020, ASAPS and VOACAP. The purpose of the comparative study is to investigate the compatibility of predicting the Maximum Usable Frequency parameter (MUF) over mid-latitude region during the severe geomagnetic storm on 17 March 2015. Three stations distributed in the mid-latitudes were selected for study; these are (Athens (23.50o E, 38.00o N), Jeju (124.53o E, 33.6o N) and Pt. Arguello (239.50o W, 34.80o N). The daily MUF outcomes were calculated using the tested models for the three adopted sites, for a span of five-day (the day of the event and two days preceding and following the event day). The calculated datasets were co
... Show MoreSara and other kid's Agony: - Back to Innocence to Save Iraq
Titanium alloys are broadly used in the medical and aerospace sectors. However, they are categorized within the hard-to-machine alloys ascribed to their higher chemical reactivity and lower thermal conductivity. This aim of this research was to study the impact of the dry-end-milling process with an uncoated tool on the produced surface roughness of Ti6Al4V alloy. This research aims to study the impact of the dry-end milling process with an uncoated tool on the produced surface roughness of Ti6Al4V alloy. Also, it seeks to develop a new hybrid neural model based on the training back propagation neural network (BPNN) with swarm optimization-gravitation search hybrid algorithms (PSO-GS
The investigation of signature validation is crucial to the field of personal authenticity. The biometrics-based system has been developed to support some information security features.Aperson’s signature, an essential biometric trait of a human being, can be used to verify their identification. In this study, a mechanism for automatically verifying signatures has been suggested. The offline properties of handwritten signatures are highlighted in this study which aims to verify the authenticity of handwritten signatures whether they are real or forged using computer-based machine learning techniques. The main goal of developing such systems is to verify people through the validity of their signatures. In this research, images of a group o
... Show MoreImage Fusion Using A Convolutional Neural Network
In this research Artificial Neural Network (ANN) technique was applied to study the filtration process in water treatment. Eight models have been developed and tested using data from a pilot filtration plant, working under different process design criteria; influent turbidity, bed depth, grain size, filtration rate and running time (length of the filtration run), recording effluent turbidity and head losses. The ANN models were constructed for the prediction of different performance criteria in the filtration process: effluent turbidity, head losses and running time. The results indicate that it is quite possible to use artificial neural networks in predicting effluent turbidity, head losses and running time in the filtration process, wi
... Show MorePassive optical network (PON) is a point to multipoint, bidirectional, high rate optical network for data communication. Different standards of PONs are being implemented, first of all PON was ATM PON (APON) which evolved in Broadband PON (BPON). The two major types are Ethernet PON (EPON) and Gigabit passive optical network (GPON). PON with these different standards is called xPON. To have an efficient performance for the last two standards of PON, some important issues will considered. In our work we will integrate a network with different queuing models such M/M/1 and M/M/m model. After analyzing IPACT as a DBA scheme for this integrated network, we modulate cycle time, traffic load, throughput, utilization and overall delay
... Show MoreThis search has introduced the techniques of multi-wavelet transform and neural network for recognition 3-D object from 2-D image using patches. The proposed techniques were tested on database of different patches features and the high energy subband of discrete multi-wavelet transform DMWT (gp) of the patches. The test set has two groups, group (1) which contains images, their (gp) patches and patches features of the same images as a part of that in the data set beside other images, (gp) patches and features, and group (2) which contains the (gp) patches and patches features the same as a part of that in the database but after modification such as rotation, scaling and translation. Recognition by back propagation (BP) neural network as com
... Show More