In the present work, the magnetic dipole and electric quadrupole moments for some sodium isotopes have been calculated using the shell model, considering the effect of the two-body effective interactions and the single-particle potentials. These isotopes are; 21Na (3/2+), 23Na (3/2+), 25Na (5/2+), 26Na (3+), 27Na (5/2+), 28Na (1+) and, 29Na (3/2+). The one-body transition density matrix elements (OBDM) have been calculated using the (USDA, USDB, HBUMSD and W) two-body effective interactions carried out in the sd-shell model space. The sd shell model space consists of the active 2s1/2, 1d5/2, and1d1/2 valence orbits above the inert 16O nucleus core, which remains closed. Skyrme interaction was implemented to generate the single-particle matrix elements with Hartree-Fock approximation and compared with those of harmonic oscillator and Wood-Saxon potentials. From the outcome of our investigation, it is possible to conclude that the shell model calculations with Skyrme-type interaction give a reasonable description for most of the selected Na isotopes. No significant difference was noticed for the magnetic dipole moments and electric quadrupole moments with experimental data, where all signs for the experimental data are reproduced correctly.
The multiple linear regression model is an important regression model that has attracted many researchers in different fields including applied mathematics, business, medicine, and social sciences , Linear regression models involving a large number of independent variables are poorly performing due to large variation and lead to inaccurate conclusions , One of the most important problems in the regression analysis is the multicollinearity Problem, which is considered one of the most important problems that has become known to many researchers , As well as their effects on the multiple linear regression model, In addition to multicollinearity, the problem of outliers in data is one of the difficulties in constructing the reg
... Show MoreThis work presents the modeling of the electrical response of monocrystalline photovoltaic module by using five parameters model based on manufacture data-sheet of a solar module that measured in stander test conditions (STC) at radiation 1000W/m² and cell temperature 25 . The model takes into account the series and parallel (shunt) resistance of the module. This paper considers the details of Matlab modeling of the solar module by a developed Simulink model using the basic equations, the first approach was to estimate the parameters: photocurrent Iph, saturation current Is, shunt resistance Rsh, series resistance Rs, ideality factor A at stander test condition (STC) by an ite
... Show MoreABSTRACT
Metal (II) complexes of Co, Ni, Cu and Zn with cefdinir C14H13N5O5S2 derivative (L) were synthesized and identification by elemental analysis CHNS Uv-Vis, FTIR, TGA, metal analysis AA, magnetic susceptibility and conduct metric measurement. by analysis the ligand behaves as a bidentate. For the cobalt complex, Tetrahedral geometry shape was suggested, while other complexes that have nickel, copper and zinc ions were proposed as octahedral geometry shape. The experimental method was studied for prevention of corrosion carbon steel in 3.5% NaCl by using a novel Cefdinir derivations drugs. The results showed that metal complex was a strong corro
... Show MoreThe study is devoted to both static and earthquake response analysis of retaining structures acted upon by lateral earth pressure. Two main approaches were implemented in the analysis, namely, the Mononobe-Okabe analytical method and the numerical Finite element procedure as provided in the ready software ABAQUS with explicit dynamic method. A basic case study considered in the present work is the bridge approach retaining walls as a part of AL-Jadiriya bridge intersection to obtain the effects of the backfill and the ground water on the retaining wall response including displacement of the retaining structure in addition to the behavior of the fill material. Parametric studies were carried out to evaluate the effects of several factors
... Show MoreThe use of real-time machine learning to optimize passport control procedures at airports can greatly improve both the efficiency and security of the processes. To automate and optimize these procedures, AI algorithms such as character recognition, facial recognition, predictive algorithms and automatic data processing can be implemented. The proposed method is to use the R-CNN object detection model to detect passport objects in real-time images collected by passport control cameras. This paper describes the step-by-step process of the proposed approach, which includes pre-processing, training and testing the R-CNN model, integrating it into the passport control system, and evaluating its accuracy and speed for efficient passenger flow
... Show MoreThis study focuses on the slab-beam interaction in one-way systems. In the context of this study, slab-beam interaction means how beam deflection can affect moment distribution in one-way slabs. This interaction is usually neglected in the traditional approximate analysis that is adopted in engineering practice and design codes. Slab positive moments have been considered as indicators on the accuracy of approximate methods, as they overestimate negative moments while underestimating positive moments.
After proposing of effecting parameters in slab-beam interaction including of panel length and width, beam dimensions, and slab thickness, Buckingham’s theorem has been adopted to transform the dimensional-mo
... Show More