Preferred Language
Articles
/
ijl-96
Evaluation of Low Level Laser Therapy Using Diode Laser in Enhancement of Episiotomy Wound Healing
...Show More Authors

we studied the effect of low level laser therapy (LLLT) using diode laser with wavelength of (790-805) nm in promotion and enhancement of wound healing of episiotomy and to evaluate the analgesic effect of LLLT in reducing the pain sensation caused by the episiotomy wounds. Nineteen women with episiotomy wound were selected and divided into three groups; 1st group (group No.1: control group) given antibiotics without laser therapy, in the 2nd group (group No.2) the wounds were exposed to laser therapy (4 sessions, each session with energy density of 19.90 J /cm2 every other day ) and systemic antibiotics were prescribed for 1 week. In the 3rd group (group No.3) the wounds were exposed to laser therapy (4 sessions, the same as in the 2nd group) but without antibiotics. Those women who exposed to laser therapy showed significant reduction in the level of pain and tenderness after the 1st laser exposure. Rapid healing process occurred within seven days. The results were about to be equal in both (group 2 and group 3), while group 1 showed prolonged period of healing (9-11) days with moderate to severe pain and tenderness that interfered with their sitting and walking. One case ended with dehiscent wound. In conclusion LLLT can be used to enhance episiotomy wound healing, and to induce analgesic effect if proper wavelength, energy density and exposure time were selected.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Mar 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Experimental and Numerical Analysis of Laser Surface Melting by Using Enthalpy Method
...Show More Authors
Abstract<p>In this study, experimental and numerical applied of heat distribution due to pulsed Nd: YAG laser surface melting. Experimental side was consists of laser parameters are, pulse duration1.3<italic>ms</italic>, wavelength 1064nm, laser energies 1.5, 2. 6 and 4.3 J, laser beam diameter is 0.6 mm and spot diameter 0.78 mm was applied a low carbon steel type St37 with a dimension 10, 10, 3 mm, length, width and thickness respectively. Numerical analysis side consist of a mathematical model and calculating a thermal cycle by using equation in the enthalpy method applied to determine the cooling rate in fusion zone. The simulation by using the enthalpy method, applied on conduction heat transfer </p> ... Show More
View Publication Preview PDF
Scopus (7)
Crossref (3)
Scopus Crossref
Publication Date
Tue Oct 08 2002
Journal Name
Iraqi Journal Of Laser
Study of Laser Propagation Parameters in the Underdense Plasma Region Using a Two Dimensional Simulation Code
...Show More Authors

The propagation of laser beam in the underdense deuterium plasma has been studied via computer simulation using the fluid model. An appropriate computer code “HEATER” has been modified and is used for this purpose. The propagation is taken to be in a cylindrical symmetric medium. Different laser wavelengths (1 = 10.6 m, 2 = 1.06 m, and 3 = 0.53 m) with a Gaussian pulse type and 15 ns pulse widths have been considered. Absorption energy and laser flux have been calculated for different plasma and laser parameters. The absorbed laser energy showed maximum for  = 0.53 m. This high absorbitivity was inferred to the effect of the pondermotive force.

View Publication Preview PDF
Publication Date
Fri Sep 30 2011
Journal Name
Al-khwarizmi Engineering Journal
Analysis of Temperature and Residual Stress Distribution in CO2 Laser Welded Aluminum 6061 Plates Using FEM
...Show More Authors

This paper develops a nonlinear transient three-dimensional heat transfer finite element model and a rate independent three-dimensional deformation model, developed for the CO2 laser welding simulations in Al-6061-T6 alloy. Simulations are performed using an indirect coupled thermal-structural method for the process of welding. Temperature-dependent thermal properties of Al-6061-T6, effect of latent heat of fusion, and the convective and radiative boundary conditions are included in the model. The heat input to the model is assumed to be a Gaussian heat source. The finite element code ANSYS12, along with a few FORTRAN subroutines, are employed to obtain the numerical results. The benefit of the proposed methodology is that it

... Show More
View Publication Preview PDF
Publication Date
Fri Feb 08 2019
Journal Name
Iraqi Journal Of Laser
Urinary Tract Stones Fragmentation using (2100 nm) Holmium: YAG Laser: (In vitro Analysis)
...Show More Authors

Urinary stones are one of the most common painful disorders of the urinary system. Four new technologies have transformed the treatment of urinary stones: Electrohydraulic lithotripsy, ultrasonic lithotripsy, extracorporeal shock wave lithotripsy, and laser lithotripsy.The purpose of this study is to determine whether pulsed holmium laser energy is an effective method for fragmenting urinary tract stones in vitro, and to determine whether stone composition affects the efficacy of holmium laser lithotripsy. Human urinary stones of known composition with different sizes, shapes and colors were used for this study. The weight and the size of each stone were measured. The surgical laser system which used in our study is Ho:YAG laser(2100nm)

... Show More
View Publication Preview PDF
Publication Date
Fri Mar 31 2023
Journal Name
Oncology And Radiotherapy
The Effect of Green Low Laser (LLL) on the white blood cells on platelet on people on brain and prostate cancer
...Show More Authors

The effect of Low-Level Laser (LLL) provided by green semiconductor laser with an emission wavelength of 532 nm on of human blood of people with brain and prostate cancer has been investigated. The effect of LLL on white blood cell (WBC), NEUT, LYMPH and MONO have been considered. Platelet count (PLT) has also been considered in this work. 2 ml of blood sample were irradiating by a green laser of the dose of 4.8 J/cm2. The results suggest a potential effect of LLL on WBC, PLT, NEUT, LYMPH, and MONO of people with brain and prostate cancer Key words: white blood cell , platelet , low-level laser therapy

Publication Date
Sun Mar 01 2009
Journal Name
Al-khwarizmi Engineering Journal
Investigation of Thermal Stress Distribution in Laser Spot Welding Process
...Show More Authors

The objective of this paper was to study the laser spot welding process of low carbon steel sheet. The investigations were based on analytical and finite element analyses. The analytical analysis was focused on a consistent set of equations representing interaction of the laser beam with materials. The numerical analysis based on 3-D finite element analysis of heat flow during laser spot welding taken into account the temperature dependence of the physical properties and latent heat of transformations using ANSYS code V.10.0 to simulate the laser welding process. The effect of laser operating parameters on the results of the temperature profile were studied in addition to the effect on thermal stresses  and dimensions of the laser w

... Show More
View Publication Preview PDF
Publication Date
Thu Feb 07 2019
Journal Name
Iraqi Journal Of Laser
CO2 Laser Treatment of Cervical Ectropion
...Show More Authors

Cervical ectropion is considered to be a physiologic condition caused by columnar epithelium migration from the cervical canal into the vaginal portion of the cervix and usually there is no treatement for clinically asymptomatic cervical ectropion . Treatment can be achieved by thermal cauterization (Electrocautery), Cryosurgery or laser vaporization. Aim of the study: To study the effectiveness of CO2 laser (10600nm) in treatment of symptomatic cervical ectropion . Setting: The study was carried out at Laser Medicine Research Clinic at the Institute of Laser for Postgraduate Studies, University of Baghdad between the first of August 2013 to the end of October 2013. Patients and Methods: Ten female Patients with age range between 25-48 y

... Show More
View Publication Preview PDF
Publication Date
Sun Mar 07 2010
Journal Name
Baghdad Science Journal
A comparative study of the effects of argon laser and continuous Nd: YAG laser on blood vessel
...Show More Authors

Several types of laser are used in experimental works in order to study the effects of laser on blood vessel. They differ from each other by a lot of properties mainly in wavelength, energy of the laser and pulse duration. In this study argon laser (488 nm- 514 nm) and continuous Nd: YAG laSer (1064 nm), have been applied to 50 samples of sheep blgod tesselS. Histologically, tha results of the study were different According to the txpe of L`sar used; apgon larer had distrabtave effects on $he blood vessal while continuous Nd: YAG laser Appeaped to be the safesd one on the blmod vessel architecture. This study concluded that argoj laser has da-aging ef&ect on

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Oct 29 2022
Journal Name
International Ophthalmology
Comparison of corneal flap thickness predictability and architecture between femtosecond laser and sub-Bowman keratomileusis microkeratome in laser in situ keratomileusis
...Show More Authors

View Publication
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sun Sep 01 2019
Journal Name
Journal Of Materials Research And Technology
The effect of laser pulse energy on ZnO nanoparticles formation by liquid phase pulsed laser ablation
...Show More Authors

Zinc Oxide nanoparticles were prepared using pulsed laser ablation process from a pure zinc metal placed inside a liquid environment. The latter is composed of acetyltrimethylammonium bromide (CTAB) of 10−3 molarity and distilled water. A Ti:Sapphire laser of 800 nm wavelength, 1 kHz pulse repetition rate, 130 fs pulse duration is used at three values of pulse energies of 0.05 mJ, 1.11 mJ and 1.15 mJ. The evaluation of the optical properties for the obtained suspension was applied through ultraviolet–visible absorption spectroscopy test (UV/VIS). The result showed peak wavelengths at 210 nm, 211 nm and 213 nm for the three used pulse energies 0.05 mJ, 1.11 mJ and 1.15 mJ respectively. This indicates a blue shift,

... Show More
View Publication Preview PDF
Scopus (51)
Crossref (48)
Scopus Clarivate Crossref