Solid state blue laser source is a solid state laser include generation of IR laser light 1064 nm and companied with other wavelength 810 nm that invented from other active medium (Tm:ZBLAN) and non-linear crystal (CLBO) are used to generate fourth harmonic of the resultant wavelength 1874 nm that is blue laser light of 460nm. Several optical component have been designed by multilayer dielectric structure and anti reflection coating analysis. By using MATLAB soft ware, the simulation done and used the following non linear material (ZrO2, HfO2, MgO, SiO, Ta2O5 CaF2) and other linear material (ZnO, MgF2, GaAs, AlAs, BaF2, LiF, TiO2) as coating material. The result showed that as more quarter wave layers are added to the structure, the reflectance spectrum acquires more oscillatory features, and a narrow, flat-topped high-reflectance region grows around the design wavelength, GaAs and MgF2 represent good choice for the coating material of the front and exit mirror of the system especially produces very narrow wavelength band width and excellent value for R=100 % , LiF2 and BaF2 are good choice used to coat non linear crystal. For the polarized dichroic beam splitter, 450 represent good choice for the incident angle and BK7 as substrate material and HfO2 as high refractive index material and ZnO as low index material for coating.
Thin a-:H films were grown successfully by fabrication of designated ingot followed by evaporation onto glass slides. A range of growth conditions, Ge contents, dopant concentration (Al and As), and substrate temperature, were employed. Stoichiometry of the thin films composition was confirmed using standard surface techniques. The structure of all films was amorphous. Film composition and deposition parameters were investigated for their bearing on film electrical and optical properties. More than one transport mechanism is indicated. It was observed that increasing substrate temperature, Ge contents, and dopant concentration lead to a decrease in the optical energy gap of those films. The role of the deposition conditions on value
... Show MoreIn this work, analytical study for simulating a Fabry-Perot bistable etalon (F-P cavity) filled with a dispersive optimized nonlinear optical material (Kerr type) such as semiconductors Indium Antimonide (InSb). Because of a trade off between the etalon finesse values and driving terms, an optimization procedures have been done on the InSb etalon/CO laser parameters, using critical switching irradiance (Ic) via simulation systems of optimization procedures of optical cavity. in order to achieve the minimum switching power and faster switching time, the optimization parameters of the finesse values and driving terms on optical bistability and switching dynamics must be studied.
... Show MoreThe structural, optical properties of copper oxide thin films ( CuO) thin films which have been prepared by thermal oxidation with exist air once and oxygen another have been studied. Structural analysis results of Cu thin films demonstrate that the single phase of Cu with high a crystalline structure with a preferred orientation (111). X-ray diffraction results confirm the formation of pure (CuO) phase in both methods of preparation. The optical constant are investigated and calculated such as absorption coefficient, refractive index, extinction coefficient and the dielectric constants for the wavelengths in the range (300-1100) nm.
In this work, pure and doped Vanadium Pentoxide (V2O5) thin films with different concentration of TiO2 (0, 0.1, 0.3, 0.5) wt were obtained using Pulse laser deposition technique on amorphous glass substrate with thickness of (250)nm. The morphological, UV-Visible and Fourier Transform Infrared Spectroscopy (FT-IR) were studied. TiO2 doping into V2O5 matrix revealed an interesting morphological change from an array of high density pure V2O5 nanorods (~140 nm) to granular structure in TiO2-doped V2O5 thin film .Transform Infrared Spectro
... Show MoreBig developments in technology have led to upset the balance of ideas, given of its own post new properties for products not provided by traditional technology, especially economic units operating within the industrial sector, and therefore it is important to develop the Iraqi industrial sector and interest to do its vital role in light Of progress technological, and the cost accounting has benefited from this technology to development its goals in the regulatory process through the use of non-destructive evaluation perspective in carrying out its functions and to provide appropriate assistance for the use of the products, which were traditional accounting does not take them into consideration. The research aims to a statement that the u
... Show MoreThe research (Virtual Reality Technology and its Uses in Industrial Product Design) is interested in the virtual reality technology used in the industrial product design and consequently knowing the functions achieved in the industrial product according to the data of that technology which participates in activating the mental and imaginary image of the user which show the parameters of the technical transformation of that product. The terms used in the research have been defined to guide the reader. The second chapter, the theoretical framework consisted of three sections the first is concerned with technology in the industrial design. The second is concerned with the virtual environment and the virtual reality. The thirds chapter consi
... Show MoreThe parametric programming considered as type of sensitivity analysis. In this research concerning to study the effect of the variations on linear programming model (objective function coefficients and right hand side) on the optimal solution. To determine the parameter (θ) value (-5≤ θ ≤5).Whereas the result، the objective function equal zero and the decision variables are non basic، when the parameter (θ = -5).The objective function value increases when the parameter (θ= 5) and the decision variables are basic، with the except of X24, X34.Whenever the parameter value increase, the objectiv
... Show MoreConstructal theory plays a major role in the conceptual design stage of the structural system in architecture. It provides a conceptual framework for predicting the form depending on natural systems to model those systems geometrically according to the constructal law that works in two directions: the first is towards predicting the general form of the structural system, and the second is the physical application of the law in the process of detailed design of the parts of the system. The aim of this paper is to determine the mechanism adopted in the structural design according to the constructal theory, assuming that the structural design according to the constructal theory achieves