Preferred Language
Articles
/
ijl-92
One dimensional Finite Element Solution of Moving Boundaries in Far IR Laser Tissue Ablation
...Show More Authors

In this work, the finite element analysis of moving coordinates has been used to study the thermal behavior of the tissue subjected to both continuous wave and pulsed CO2 laser. The results are compared with previously published data, and a good agreement has been found, which verifies the implemented theory. Some conclusions are obtained; As pulse width decreases, or repetition rate increases, or fluence increases then the char depth is decreased which can be explained by an increase in induced energy or its rate, which increases the ablation rate, leading to a decrease in char depth. Thus: An increase in the fluence or decreasing pulse width or increasing repetition rate will increase ablation rate, which will increase the depth of cutting. The selection of a proper laser parameters may be helpful for doctors in obtaining optimum advantages in such treatment.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Feb 29 2012
Journal Name
Al-khwarizmi Engineering Journal
Effect of Laser Cutting Methods on Hole Deviation and Surface Integrity
...Show More Authors

In the present work usedNd:YAG laser systems of different output characteristic were employed to study the drilling process of material used in scientific and industrial fields. This material include Manganese hard steel. Our study went into the affecting parameters in drilling of Manganese hard steel by laser. Drilling process is achieved through material absorption of part of the incident laser beam. It is the resultant of interfering both, laser beam and material properties and the focusing conditions of the beam. The results as shown that the increase in the laser pulse energy over the used level has raised the hole diameter, depth and increased the hole taper. In addition to that a hole taper was affected by the laser energy, the fo

... Show More
View Publication Preview PDF
Publication Date
Thu Nov 02 2023
Journal Name
Journal Of Engineering
Numerical Study of Piled Raft Foundation in Non-Homogeneous Soil Using Finite Element Method
...Show More Authors

This paper analyzes a piled-raft foundation on non-homogeneous soils with variable layer depth percentages. The present work aims to perform a three-dimensional finite element analysis of a piled-raft foundation subjected to vertical load using the PLAXIS 3D software. Parametric analysis was carried out to determine the effect of soil type and initial layer thickness. The parametric study showed that increasing the relative density from 30 % to 80 % of the upper sand layer and the thickness of the first layer has led to an increase in the ultimate load and a decrease in the settlement of piled raft foundations for the cases of sand over weak soil.  In clay over weak soil, the ultimate load of the piled raft foundation w

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jan 08 2019
Journal Name
Iraqi Journal Of Physics
Preparation of Ag nanoparticles via pulsed laser ablation in liquid for biological applications
...Show More Authors

Ag nanoparticles were prepared using Nd:YAG laser from Ag matel in distilled water using different energies laser (100 and 600) mJ using 200 pulses, and study the effect of the preparation conditions on the structural characteristics of and then study the effect of nanoparticles on the rate of killing the two types of bacteria particles (Staph and E.coli). The goal is to prepare the nanoparticle effectively used to kill bacteria.

View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sat Aug 01 2015
Journal Name
Materials Science And Engineering: C
Antibacterial activity of magnetic iron oxide nanoparticles synthesized by laser ablation in liquid
...Show More Authors

In this study, (50–110 nm) magnetic iron oxide (α-Fe2O3) nanoparticles were synthesized by pulsed laser ablation of iron target in dimethylformamide (DMF) and sodium dodecyl sulfate (SDS) solutions. The structural properties of the synthesized nanoparticles were investigated by using Fourier Transform Infrared (FT-IR) spectroscopy, UV–VIS absorption, scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD). The effect of laser fluence on the characteristics of these nanoparticles was studied. Antibacterial activities of iron oxide nanoparticles were tested against Gram-positive; Staphylococcus aureus and Gram-negative; Escherichia coli, Pseudomonas aeruginosa and Serratia marcescens. The results sh

... Show More
View Publication
Scopus (212)
Crossref (210)
Scopus Clarivate Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Aip Conference Proceedings
Experimental and theoretical study of (PVC) nanoparticles prepared by laser ablation in ethanol
...Show More Authors

In this manuscript divide into two parts the first experimental and the second theoretical. The experimental part of polyvinyl chloride (PVC) can be used with aluminum (30%). Nanomaterials are synthesized by a laser pulse melting solution by ethanol. The effect of laser on the structural, morphological, optical, and electrical properties of nanoparticles (PVC) was examined by UV spectroscopy, x-ray diffraction (XRD), electron microscopy (TEM). The theoretical part of the DFT can be used to approximate the generalized gradient of the Perdew, Burke, and Ernzerhof (PBE) / 6-31G (d) groups, which were created using additional Gaussian 09 software through Gaussian 5.08. To build PVC nanocrystal pure which chemical formula [(C2H3Cl)n] and build (

... Show More
Publication Date
Mon Oct 21 2019
Journal Name
Civil Engineering Journal
Non-Smooth Behavior of Reinforced Concrete Beam Using Extended Finite Element Method
...Show More Authors

Flexure members such as reinforced concrete (RC) simply supported beams subjected to two-point loading were analyzed numerically. The Extended Finite Element Method (XFEM) was employed for the treatment the non-smooth h behaviour such as discontinuities and singularities. This method is a powerful technique used for the analysis of the fracture process and crack propagation in concrete. Concrete is a heterogeneous material that consists of coarse aggregate, cement mortar and air voids distributed in the cement paste. Numerical modeling of concrete comprises a two-scale model, using mesoscale and macroscale numerical models. The effectiveness and validity of the Meso-Scale Approach (MSA) in modeling of the reinforced concrete beams w

... Show More
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Tue Feb 01 2022
Journal Name
Journal Of Engineering
Nonlinear Finite Element Analysis of Fiber Reinforced Concrete Pavement under Dynamic Loading
...Show More Authors

The analysis of rigid pavements is a complex mission for many reasons. First, the loading conditions include the repetition of parts of the applied loads (cyclic loads), which produce fatigue in the pavement materials. Additionally, the climatic conditions reveal an important role in the performance of the pavement since the expansion or contraction induced by temperature differences may significantly change the supporting conditions of the pavement. There is an extra difficulty because the pavement structure is made of completely different materials, such as concrete, steel, and soil, with problems related to their interfaces like contact or friction. Because of the problem's difficulty, the finite element simulation is

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Tue Mar 31 2020
Journal Name
Association Of Arab Universities Journal Of Engineering Sciences
Extended Finite Element Analysis of Reinforced Concrete Beams Using Meso-Scale Modeling
...Show More Authors

Four simply supported reinforced concrete (RC) beams were test experimentaly and analyzed using the extended finite element method (XFEM). This method is used to treat the discontinuities resulting from the fracture process and crack propagation in that occur in concrete. The Meso-Scale Approach (MSA) used to model concrete as a heterogenous material consists of a three-phasic material (coarse aggregate, mortar, and air voids in the cement paste). The coarse aggregate that was used in the casting of these beams rounded and crashed aggregate shape with maximum size of 20 mm. The compressive strength used in these beams is equal to 17 MPa and 34 MPa, respectively. These RC beams are designed to fail due to flexure when subjected to lo

... Show More
Crossref
Publication Date
Wed Nov 28 2018
Journal Name
International Journal Of Engineering & Technology
Finite Element Analysis for The Response of URM Walls Supporting RC Slab
...Show More Authors

The aim for this research is to investigate the effect of inclusion of crack incidence into the 2D numerical model of the masonry units and bonding mortar on the behavior of unreinforced masonry walls supporting a loaded reinforced concrete slab. The finite element method was implemented for the modeling and analysis of unreinforced masonry walls. In this paper, ABAQUS, FE software with implicit solver was used to model and analyze unreinforced masonry walls which are subjected to a vertical load. Detailed Micro Modeling technique was used to model the masonry units, mortar and unit-mortar interface separately. It was found that considering potential pure tensional cracks located vertically in the middle of the mortar and units show

... Show More
Crossref (1)
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
2nd International Conference For Engineering Sciences And Information Technology (esit 2022): Esit2022 Conference Proceedings
Finding timewise diffusion coefficient from nonlocal integral condition in one-dimensional heat equation
...Show More Authors

View Publication
Scopus Crossref