Spider veins are a common aesthetic problem mainly in females , the conventional method of treatment is by microsclerotherapy (injections) but laser therapy has become increasingly efficacious and a convenient method for treatment. The present study was performed to investigate the effectiveness and safety of pulsed diode laser (810nm) by doing thermal photocoagulation. Ten patients with lower limbs spider veins were included in this prospective study. They were treated with a repetitive pulsed diode laser in non contact technique using the following laser parameters (wave length 810nm,power 1 W ,pulse duration 0.1 s., pulse interval 0.5 s, spot diameter 4mm ,power density 7.9 W/cm2). Laser therapy was performed on day zero and day fourteen. Clinical assessments were carried out before laser therapy and immediately after the first laser therapy, after 2 weeks, 4 weeks, and 6 weeks. The procedure was performed without using any type of anesthesia. Results showed that there was a remarkable improvement for all patients after the first treatment and after the second treatment. Only six patients showed a complete disappearance of the spider veins with absent peroperative and postoperative pain and complications, within short operative time in comparison with the microsclerotherapy. So the repetitive pulsed diode laser therapy (810nm) is an effective and safe treatment option for lower limbs spider veins. It's recommended that larger numbers of cases to be done to allow for a proper statistical analysis and a longer follow up period to assess the recurrence rate.
It is the regression analysis is the foundation stone of knowledge of statistics , which mostly depends on the ordinary least square method , but as is well known that the way the above mentioned her several conditions to operate accurately and the results can be unreliable , add to that the lack of certain conditions make it impossible to complete the work and analysis method and among those conditions are the multi-co linearity problem , and we are in the process of detected that problem between the independent variables using farrar –glauber test , in addition to the requirement linearity data and the lack of the condition last has been resorting to the
... Show MoreThe electrocoagulation process became one of the most important technologies used for water treatment processes in the last few years. It’s the preferred method to remove suspended solids and heavy metals from water for treating drinking water and wastewater from textile, diary, and electroplating factories. This research aims to study the effect of using the electrocoagulation process with aluminum electrodes on the removal efficiency of suspended solids and turbidity presented in raw water and optimizing by the response surface methodology (RSM). The most important variables studied in this research included electrode spacing, the applied voltage, and the operating time of the electrocoagulation process. The samples
... Show MoreThe present work aims to study the treatment of oily wastewater by means of forward osmosis membrane bioreactor process. Side stream (external) configuration and submerged (internal) configuration of osmotic membrane bioreactor were performed and investigated. The experimental work for each configuration was carried out continuously over 21 days. The flux behavior of forward osmosis membrane in an osmotic membrane bioreactor (OMBR) was investigated, using NaCl as the draw solution and CTA as FO membrane. The effect of mixed liquor suspended solids (MLSS) concentration and TDS accumulation of bioreactor on water flux and membrane fouling behaviors was detected. The accumulation and rejection of nutrients in the bioreactor (Nitrate, COD,
... Show MorePorous materials play an important role in creating a sustainable environment by improving wastewater treatment's efficacy. Porous materials, including adsorbents or ion exchangers, catalysts, metal–organic frameworks, composites, carbon materials, and membranes, have widespread applications in treating wastewater and air pollution. This review examines recent developments in porous materials, focusing on their effectiveness for different wastewater pollutants. Specifically, they can treat a wide range of water contaminants, and many remove over 95% of targeted contaminants. Recent advancements include a wider range of adsorption options, heterogeneous catalysis, a new UV/H2O
In this paper, previous studies about Fuzzy regression had been presented. The fuzzy regression is a generalization of the traditional regression model that formulates a fuzzy environment's relationship to independent and dependent variables. All this can be introduced by non-parametric model, as well as a semi-parametric model. Moreover, results obtained from the previous studies and their conclusions were put forward in this context. So, we suggest a novel method of estimation via new weights instead of the old weights and introduce
Paper Type: Review article.
another suggestion based on artificial neural networks.
The Sequencing Batch Reactor system (SBR) is a major component of the municipal wastewater biological treatment system and water reclamation that provides high-quality water that could be reused in restricted plants that which require large quantities of water despite the lack of water. The research aims to investigate the performance of a pilot plant SBR unit under real operation conditions that was installed and operated in Al-Rustamiya Wastewater Treatment Plant (WWTP), Baghdad, Iraq. Results showed that the BOD5/COD ratio of the raw wastewater was within the average value at 0.66 emphasizing the organic nature of the influent flow and hence the amenability to biological treatment. The results also ensured that the treatment pro
... Show MoreTreatment of a high strength acidic industrial wastewater was attempted by activated carbon
adsorption to evaluate the feasibility of yielding effluents of reusable qualities. The experimental
methods which were employed in this investigation included batch and column studies. The
former was used to evaluate the rate and equilibrium of carbon adsorption, while the latter was
used to determine treatment efficiencies and performance characteristics. Fixed bed and expanded
bed adsorbers were constructed in the column studies. In this study, the adsorption behavior of acetic acid onto activated carbon was examined as a function of the concentration of the adsorbate, contact time and adsorbent dosage. The adsorption data was mo
A hybrid cadmium sulfide nanoparticles (CdSNPs) electroluminescence (EL) device was fabricated by Phase – Segregated Method and characterized. It was fabricated as layers of (ITO/poly-TPD:CdS ) and (ITO/poly-TPD:CdS /Alq3). Poly-TPD is an excellent Hole Transport Layer (HTL), CdSNPs is an emitting layer and Alq3 as electron transport layer (ETL). The EL of Organic-Inorganic Light Emitting Diode (OILED) was studied at room temperature at 26V. This was achieved according to band-to-band transition in CdSNPs. From the I-V curve behavior, the addition of Alq3 layer decreased the transfer of electrons by about 250 times. The I-V behavior for (poly-TPD/CdS) is exponential with a maximum current of 4500 µA. While, the current i
... Show MoreDiode laser technology is well established for biomedicine applications which demand high-power pulse-wave. They are extensively utilized from medical imaging and testing to surgical therapies and the latest aesthetic processes. For medical therapeutic practices, diode lasers have become the ideal laser source for this particular purpose. In the last previous years, semiconductor laser technology has evolved to produce high-repetitions rate near-infrared pulsed lasers diodes that are dependable, low-cost, portable, and small-weight, about few grams. In this paper, we review the recent development and demonstration of diode laser devices for biomedical applications recorded in the latest years taking into account the power, wavelength, and p
... Show More