In this study, a mathematical model is presented to study the chemisorption of two interacting atoms on solid surface in the presence of laser field. Our mathematical model is based on the occupation numbers formula that depends on the laser field which we derived according to Anderson model for single atom adsorbed on solid surface. Occupation numbers formula and chemisorption energy formula are derived for two interacting atoms (as a diatomic molecule) as they approach to the surface taking into account the correlation effects on each atom and between atoms. This model is characterized by obvious dependence of all relations on the system variables and the laser field characteristics which gives precise description for the molecule – surface interaction dynamics as a function of the normal distance from the surface and the distance between atoms .Our mathematical model is applied to the Na2/W(100) system .It is found that the type of interaction between the atoms and surface , whether it is repulsive or attractive , is determined by the laser strength where the repulsion between the two atoms increases with the laser strength increasing. So it makes sure that the laser field can be consider as a tool to control the ionization and dissociation processes that happen on the solid surface.
Abstract: Under high-excitation irradiance conditions to induce fluorescence, the dependence of photobleaching of Coumarin 307 (C307) and acriflavine (ACF) laser dyes in liquid and solid phases have been studied. A cw LD laser source of 1 mW and 407 nm wavelength was used as an exciting source. For one hour exposure time, it was found that the solid dye samples suffer photobleaching more than the liquid dye samples. This is because in liquid solutions the dye molecules can circulate during the irradiation, while the photobleaching is a serious problem when the dye is incorporated into solid matrix and cannot circulate.
Disequilibrium compaction, sometimes referred to as under compaction, has been identified as a major mechanism of abnormal pore pressure buildup in sedimentary basins. This is attributed to the interplay between the rate at which sediments are deposited and the rate at which fluids associated with the sediments are expelled with respect to burial depth. The purpose of this research is to analyze the mechanisms associated with abnormal pore pressure regime in the sedimentary formation. The study area “Jay field†is an offshore Niger Delta susceptible to abnormal pore pressure regime in the Agbada –Akata formations of the basin. Well log analysis and cross plots were applied to determine the unde
... Show MoreChina's economic policy and its huge capabilities operate according to an expansion strategy, especially in investing foreign projects, as the past ten years have witnessed a major development in the elements of comprehensive strength, especially in the economic field, in 2014 China launched the largest initiative in the world, represented by the Belt and Road Project (BRI), which links nearly 70 countries, through this project, a very important region has emerged, which is (the port of cadres) in Pakistan, as China has headed towards that region and given the highest importance that is in its interest in the first place regardless of the great Pakistani interest, This is consistent with its future aspirations, especially after breaking
... Show MoreThe energy density state are the powerful factor for evaluate the validity of a material in any application. This research focused on examining the electrical properties of the Se6Te4- xSbx glass semiconductor with x=1, 2 and 3, using the thermal evaporation technique. D.C electrical conductivity was used by determine the current, voltage and temperatures, where the electrical conductivity was studied as a function of temperature and the mechanical electrical conduction were determined in the different conduction regions (the extended and localized area and at the Fermi level). In addition, the density of the energy states in these regions is calculated using the mathematical equations. The constants of energy density states are det
... Show MoreIt is known that energy subiect has ocuppied a lot of scientests minds about
how to treat the traditional energy and the renewing energy . we know that
most traditional energy coal , oil , Natural gas, neuclear fuel , are limited
guantiy and alsow subjected to be ended .Statics studies refer to reserve
of oil in world will exhausted btween ( 2075- 2100) and alsow cosl too .
While neuclear fuerl which the world seek today through explod the uranium
atom ( 233) the therum atom (239) and neuclear mxied through ruemlear
mixing , These energy have effect on environment and humanity speciaty if
they are used in militery purposes .
For all theses scientests srarch for resources of renewing enery through
researches
In this Research, (In2O3: CdO) films were prepared using pulsed laser deposition (PLD) method on glass substrate at room temperature deposited at laser influence 500mJ/cm2with different shoots N= (200,300,400,500and600). the structural, and the optical properties and the films are studied with different annealing temperatures (523and 623) K. Optical measurements and the films were analyzed by UV-VIS absorption spectra. The structural properties of samples were investigated by x-ray diffraction patterns of the films and show that the films and polycrystalline Structure with all shoots. Transmittance spectrum found is equal to 93.17%, refractive index range is 1.635 and energy gap range is 2.75-3.15ev.
Autorías: Ghassan Adeeb Abdulhasan, Falih Hashim Fenjan, Hussein Jabber Abood. Localización: Revista iberoamericana de psicología del ejercicio y el deporte. Nº. 3, 2022. Artículo de Revista en Dialnet.
The effects of scattering and secondary radiation generated inside the material on dose equivalent rate where studied using Co60 and Cs137 sources of activity (199.8 , 177.6) MBq , respectively for different thicknesses of Al , Pb and Pb- glass . The results showed that the equivalent rate increases when the effect of scattering was included for Al and Pb shields with cobalt-60 source of energy 1.25 MeV ; and decreases for Pb shield with Cs-137 source of energy 0.662MeV .The results showed also that the atomic number of The material effects the dose equivalent rate . The Pb-glass shield was found to be more efficient in absorption than other shields.