Preferred Language
Articles
/
ijl-66
Photoacoustic Imaging for Tumor Detection: An in vitro Simulation Study
...Show More Authors

Photoacoustic is a unique imaging method that combines the absorption contrast of light or radio frequency waves with ultrasound resolution. When the deposition of this energy is sufficiently short, a thermo-elastic expansion takes place whereby acoustic waves are generated. These waves can be recorded and stored to construct an image. This work presents experimental procedure of laser photoacoustic two dimensional imaging to detect tumor embedded within normal tissue. The experimental work is accomplished using phantoms that are sandwiched from fish heart or blood sac (simulating a tumor) 1-14mm mean diameter embedded within chicken breast to simulate a real tissue. Nd: YAG laser of 1.064μm and 532nm wavelengths, 10ns pulse duration, 445mJ pulse energy has been used to induce the acoustic wave signal in these targets. The acoustic signal is then filtered and analyzed to construct the target image. The analysis of experimental data and image construction has been accomplished using matlab software. The measurement analysis showed reasonable agreement between the estimated object dimension and the actual object size. The error in fish heart object dimension ranged from -14% to +9%, and the maximum error in Blood sac object dimension was -55%. The object dimensional error increased to -92% when the laser spot was magnified from 2mm to 45mm (to cover the phantom area) as the energy density decreases significantly.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu May 30 2024
Journal Name
Iraqi Journal Of Science
An Evolutionary Algorithm for Improving the Quantity and Quality of the Detected Complexes from Protein Interaction Networks
...Show More Authors

One of the recent significant but challenging research studies in computational biology and bioinformatics is to unveil protein complexes from protein-protein interaction networks (PPINs). However, the development of a reliable algorithm to detect more complexes with high quality is still ongoing in many studies. The main contribution of this paper is to improve the effectiveness of the well-known modularity density ( ) model when used as a single objective optimization function in the framework of the canonical evolutionary algorithm (EA). To this end, the design of the EA is modified with a gene ontology-based mutation operator, where the aim is to make a positive collaboration between the modularity density model and the proposed

... Show More
View Publication
Scopus Crossref
Publication Date
Tue Mar 30 2021
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
An Experimental Assessment of Iraqi Local Cement and Cement Slurry Design for Iraqi Oil Wells Using Cemcade
...Show More Authors

This effort is related to describe and assess the performance of the Iraqi cement sample planned for oil well-cementing jobs in Iraq. In this paper, major cementing properties which are thickening time, compressive strength, and free water in addition to the rheological properties and filtration of cement slurry underneath definite circumstances are experimentally tested. The consequences point to that the Iraqi cement after special additives encounter the requests of the API standards and can consequently is used in cementing jobs for oil wells. At this research, there is a comparative investigation established on experimental work on the effectiveness of some additives that considered as waste materials which are silica fume, bauxite,

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
An Efficient Shrinkage Estimators For Generalized Inverse Rayleigh Distribution Based On Bounded And Series Stress-Strength Models
...Show More Authors
Abstract<p>In this paper, we investigate two stress-strength models (Bounded and Series) in systems reliability based on Generalized Inverse Rayleigh distribution. To obtain some estimates of shrinkage estimators, Bayesian methods under informative and non-informative assumptions are used. For comparison of the presented methods, Monte Carlo simulations based on the Mean squared Error criteria are applied.</p>
View Publication
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Tue Oct 24 2023
Journal Name
Environmental Engineering Research
Exploring electromembrane extraction and liquid membrane for efficient removal of heavy metals from aqueous solutions: An overview
...Show More Authors

Environmental pollution is experiencing an alarming surge within the global ecosystem, warranting urgent attention. Among the significant challenges that demand immediate resolution, effective treatment of industrial pollutants stands out prominently, which for decades has been the focus of most researchers for sustainable industrial development aiming to remove those pollutants and recover some of them. The liquid membrane (LM) method, specifically electromembrane extraction (EME), offers promise. EME deploys an electric field, reducing extraction time and energy use while staying eco-friendly. However, there's a crucial knowledge gap. Despite strides in understanding and applying EME, optimizing it for diverse industrial pollutant

... Show More
View Publication
Scopus (3)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Al-khwarizmi Engineering Journal
Development of an ANN Model for RGB Color Classification using the Dataset Extracted from a Fabricated Colorimeter
...Show More Authors

Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an object under de

... Show More
Preview PDF
Scopus Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Al-khwarizmi Engineering Journal
Development of an ANN Model for RGB Color Classification using the Dataset Extracted from a Fabricated Colorimeter
...Show More Authors

 

Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an ob

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Wed Apr 01 2009
Journal Name
International Journal Of Applied Environmental Sciences
An expert System for Predicting the Effects of Noise Pollution on Grass Trimming Task Using Fuzzy Modeling
...Show More Authors

Grass trimming operation is widely done in Malaysia for the purpose of maintaining highways. Large number of operators engaged in this work encounters high level of noise generated by back pack type grass trimmer used for this purpose. High level of noise exposure gives different kinds of ill effect on human operators. Exact nature of deteriorated work performance is not known. For predicting the work efficiency deterioration, fuzzy tool has been used in present research. It has been established that a fuzzy computing system will help in identification and analysis of fuzzy models fuzzy system offers a convenient way of representing the relationships between the inputs and outputs of a system in the form of IF-THEN rules. The paper presents

... Show More
View Publication Preview PDF
Publication Date
Tue Jan 16 2018
Journal Name
Design And Manufacture An Automatic Knife For Date Palm Tree Frond Cutting Operates By Frequency Theory Cutting‏ Mra Abdulrazak A. Jasim‏
Design and manufacture an automatic knife for date palm tree frond cutting Operates by frequency theory Cutting‏
...Show More Authors

Publication Date
Fri Jan 24 2025
Journal Name
Karbala International Journal Of Modern Science
Chemistry of Metalloguanines: An Overview of Their Synthesis Routes and Their Implementations for the Period 2000-2024
...Show More Authors

Guanine has a variety of roles in chemistry, from its basic function in the storing and transferring genetic information to its usages in synthetic chemistry and other fields. Because of its distinct structure and biological importance, it is a fundamental component of contemporary study in organic chemistry and molecular biology. In this review, we focused on covering the synthetic pathways of various derivatives of guanine from the year 2000 until the present. As a result of the guanine molecule containing multiple functional groups, this gives us the ability to prepare several guanines such as O6-alkylating guanines, O6-benzylguanines, 8-aza-O6-benzylguanines, 9-substituted guanines, guanine-azo derivatives, guanine Schiff bases, guanin

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Sun Feb 02 2025
Journal Name
Engineering, Technology &amp; Applied Science Research
An Enhanced Document Source Identification System for Printer Forensic Applications based on the Boosted Quantum KNN Classifier
...Show More Authors

Document source identification in printer forensics involves determining the origin of a printed document based on characteristics such as the printer model, serial number, defects, or unique printing artifacts. This process is crucial in forensic investigations, particularly in cases involving counterfeit documents or unauthorized printing. However, consistent pattern identification across various printer types remains challenging, especially when efforts are made to alter printer-generated artifacts. Machine learning models are often used in these tasks, but selecting discriminative features while minimizing noise is essential. Traditional KNN classifiers require a careful selection of distance metrics to capture relevant printing

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref