Photoacoustic is a unique imaging method that combines the absorption contrast of light or radio frequency waves with ultrasound resolution. When the deposition of this energy is sufficiently short, a thermo-elastic expansion takes place whereby acoustic waves are generated. These waves can be recorded and stored to construct an image. This work presents experimental procedure of laser photoacoustic two dimensional imaging to detect tumor embedded within normal tissue. The experimental work is accomplished using phantoms that are sandwiched from fish heart or blood sac (simulating a tumor) 1-14mm mean diameter embedded within chicken breast to simulate a real tissue. Nd: YAG laser of 1.064μm and 532nm wavelengths, 10ns pulse duration, 445mJ pulse energy has been used to induce the acoustic wave signal in these targets. The acoustic signal is then filtered and analyzed to construct the target image. The analysis of experimental data and image construction has been accomplished using matlab software. The measurement analysis showed reasonable agreement between the estimated object dimension and the actual object size. The error in fish heart object dimension ranged from -14% to +9%, and the maximum error in Blood sac object dimension was -55%. The object dimensional error increased to -92% when the laser spot was magnified from 2mm to 45mm (to cover the phantom area) as the energy density decreases significantly.
The Internet of Things (IoT) is an information network that connects gadgets and sensors to allow new autonomous tasks. The Industrial Internet of Things (IIoT) refers to the integration of IoT with industrial applications. Some vital infrastructures, such as water delivery networks, use IIoT. The scattered topology of IIoT and resource limits of edge computing provide new difficulties to traditional data storage, transport, and security protection with the rapid expansion of the IIoT. In this paper, a recovery mechanism to recover the edge network failure is proposed by considering repair cost and computational demands. The NP-hard problem was divided into interdependent major and minor problems that could be solved in polynomial t
... Show MoreThe convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recog
... Show MoreThe global food supply heavily depends on utilizing fertilizers to meet production goals. The adverse impacts of traditional fertilization practices on the environment have necessitated the exploration of new alternatives in the form of smart fertilizer technologies (SFTs). This review seeks to categorize SFTs, which are slow and controlled-release Fertilizers (SCRFs), nano fertilizers, and biological fertilizers, and describes their operational principles. It examines the environmental implications of conventional fertilizers and outlines the attributes of SFTs that effectively address these concerns. The findings demonstrate a pronounced environmental advantage of SFTs, including enhanced crop yields, minimized nutrient loss, improved nut
... Show MoreScheduling Timetables for courses in the big departments in the universities is a very hard problem and is often be solved by many previous works although results are partially optimal. This work implements the principle of an evolutionary algorithm by using genetic theories to solve the timetabling problem to get a random and full optimal timetable with the ability to generate a multi-solution timetable for each stage in the collage. The major idea is to generate course timetables automatically while discovering the area of constraints to get an optimal and flexible schedule with no redundancy through the change of a viable course timetable. The main contribution in this work is indicated by increasing the flexibility of generating opti
... Show MoreHydro cracking of heavy oil is used in refinery to produce invaluable products. In this research, a model of hydro cracking reactor has been used to study the behavior of heavy oil in hydro cracking under the conditions recommended by literature in terms lumping of feed and products. The lumping scheme is based on five lumps include: heavy oil, vacuum oil, distillates, naphtha and gases. The first order kinetics was assumed for the conversion in the model and the system is modeled as an isothermal tubular reactor. MATLAB 6.1 was used to solve the model for a five lump scheme for different values of feed velocity, and temperature.
The tactical side in application of offensive plans in basketball did not take a large in scientific research because it always change because it related in mental ability of players and for the condition of the game and researchers notice that from their followed a lot of games for Duhok basketball club in Iraq league. There is a problem that connected in games results it clears in weakness in application of offensive plans in all kind (man to man & zone defense & side ball plans & under basketball and half court). The goal of study concentrate by designing a sheet for som offensive plans for study and analysis to Duhok club on Asian Championship 2011 at the base the sample contained (Iraq Duhok & application science Jordan & Lebanon sport
... Show MoreThis study aimed to investigate the prevalence of intestinal helminth infections in humans and detect Toxocara spp. in cats, with a focus on assessing the impact of age and gender on infection rates. Traditional diagnostic methods have historically limited the accurate identification of helminth infections in humans. Analysis of 450 human stool samples revealed an overall helminth infection rate of 5.7% using conventional techniques. The specific infection rates were 0.4% for Strongyloides stercoralis, 0.6% for Schistosoma mansoni, 1.7% for Hymenolepis nana, and 2.8% for Ascaris lumbricoides. Notably, no infections were recorded in the 30–39 and ≥40-year age groups, while the highest infection rate (16.3%, P≤0.01) was observed in indi
... Show More