One of the most popular causes for implant infection is dental plaque bacteria. Previous studies have shown the bactericidal effect of CO2 laser irradiation on bacteria associated with soft tissue surrounding the implant materials. No published studies have examined the effect of irradiation by CO2 laser on Streptococcus oralis and Staphylococcus aureus.The aim of this study was to evaluate the bactericidal effect of CO2 laser on bacteria that are causing dental implant infections. This study was carried out on two isolates of bacterial species out of 25 samples, isolated from patients having soft tissue infections around the dental implant. These two pure isolates including Streptococcus oralis and Staphylococcus aureus were identified by microscopic examination, culture characteristics ,biochemical tests and API system. Bacterial suspension (10-6 CFU/ml) was irradiated with 10600 nm CO2 laser,CW mode emission using different power densities 500 -3000W/cm2 (500 W/cm2 increment)with different exposure times 10-60s (10 sec.increment for isolate of Streptococcus oralis) and 5-30s (5 sec. increment for isolate of Staphylococcus aureus).After the irradiation, 100μl of bacterial suspension was spread over agar plates and incubated at 37 ºC for 24-48 hrs. under aerobic and anaerobic conditions according to the nature growth of bacteria. Colony forming units (CFUs) were counted and compared with control group then the bactericidal effect of CO2 laser was assessed in relation to the colony forming units of control group.In this study the maximum bactericidal effect of CO2 laser on S.oralis was 100% at 2500W/cm2 with exposure times 50 and 60s, whereas the CO2 laser eliminated 100% of S.aureus at 3000W/cm2 at 25 and 30 s exposure time.The results indicate that irradiation by CO2 laser CW mode emission may be useful in reducing bacterial colony forming units at low (such as 1000 W/cm2) and high power density. Also the results of this study reveal that complete or nearly complete reduction in the bacterial counts may be achieved.
The present work represents a theoretical study for the correction of spherical aberration of an immersion lens of axial symmetry operating under the effect of space charge, represented by a second order function and preassigned magnification conditions in a focusing of high current ion beams. The space charge depends strongly on the value of the ionic beam current which is found to be very effective and represents an important factor effecting the value of spherical aberration .The distribution of the space charge was measured from knowing it's density .It is effect on the trajectory of the ion beam was studied. To obtain the trajectories of the charged particles which satisfy the preassined potential the axial electrostatic potential w
... Show MoreBackground: Beta-thalassemia major is the most common monogenic known disorder in the Middle East, characterized by anomalies in the synthesis of the beta chains of hemoglobin resulting in variable phenotypes ranging from severe anemia to clinically asymptomatic Individuals. This study aimed to evaluate salivary flow rate and salivary IgA in β-thalassemia major patients. Since many oral and systemic conditions manifest themselves as changes in the flow and composition of saliva the dental practitioner is advised to remain up-to-date with this issue. Materials and methods: The study samples consist of (60) subjects, patients group composed of (30) patients with β –thalassemia major, age rang (5-23) years and (30) healthy locking
... Show MoreThe problem of the research lies in special motor abilities training programs like the balance that positively affect coordination between the nervous system and muscles. These training programs did not get enough attention from athletes especially young athletes; their training was restricted to physical abilities like strength, speed, and endurance instead. The research aimed at designing an apparatus for developing athletes’ balance in national centers for gifted/ ministry of youth and sport so as to provide a measurement for coached in this field. The results showed that the designed apparatus have a positive effect on developing the subjects’ balance in boxing and basketball athletes.
The research aims to study the effect of knowledge upgrade on business continuity in private colleges and universities in Baghdad. The research problem is summarized in the main question (were the academic leaders able to employ knowledge upgrading to enhance business continuity). The most important of this sector were the universities and the private college in the city of Baghdad as a field for this research, the researchers conducted a field visit to (10) universities or private colleges, the research sample consisted of (177) individuals from the deans of colleges and their assistants, as well as heads of scientific and administrative departments. The data was analyzed and the hypotheses were tested using the appropriate statistical
... Show MoreThe analytic solution for the unsteady flow of generalized Oldroyd- B fluid on oscillating rectangular duct is studied. In the absence of the frequency of oscillations, we obtain the problem for the flow of generalized Oldroyd- B fluid in a duct of rectangular cross- section moving parallel to its length. The problem is solved by applying the double finite Fourier sine and discrete Laplace transforms. The solutions for the generalized Maxwell fluids and the ordinary Maxwell fluid appear as limiting cases of the solutions obtained here. Finally, the effect of material parameters on the velocity profile spotlighted by means of the graphical illustrations
Wireless Body Area Network (WBAN) is a tool that improves real-time patient health observation in hospitals, asylums, especially at home. WBAN has grown popularity in recent years due to its critical role and vast range of medical applications. Due to the sensitive nature of the patient information being transmitted through the WBAN network, security is of paramount importance. To guarantee the safe movement of data between sensor nodes and various WBAN networks, a high level of security is required in a WBAN network. This research introduces a novel technique named Integrated Grasshopper Optimization Algorithm with Artificial Neural Network (IGO-ANN) for distinguishing between trusted nodes in WBAN networks by means of a classifica
... Show MoreThin films of microcrystalline and nanocrystalline -silicon carbide and silicon, where deposited on glass substrate with substrate temperature ranging from 350-400C, with deposition rate 0.5nm per pulse, by laser induced chemical vapor deposition. The deposition induced by TEACO2 laser. The reactant gases (SiH4 and C2H4) photo decompose throughout collision associated multiple photon dissociate. Such inhomogeneous film structure containing crystalline silicon, silicon carbide and amorphous silicon carbide matrix, give rise to a new type of material nanocrystalline silicon carbide in which the optical transmittance is governed by amorphous SiC phase while nanocrystalline grain are responsible for the conduction processes. This new m
... Show MoreBackground: Laser urinary stone lithotripsy is an established endourological modality. Ho:YAG(2100nm) laser have broadened the indications for ureteroscopic stone managements to include larger stone sizes throughout the whole urinary tract.
Purpose: To evaluate the effectiveness and safety of Holmium: YAG(2100nm) laser lithotripsy with a semirigid uretero scope for urinary stone calculi in a prospective cohort of 17 patients.
Patients and Methods: Holmium: YAG(2100nm) laser lithotripsy was performed with a semirigid ureteroscope in 17 patients from September 2016 to December 2016. Calculi were located in the lower ureter in 9 patients (52.9%), the midure
... Show MoreNd:YAG laser pulses of 9 nanosecond pulse duration and operating wavelength at 1.06 μm, were utilized to drill high thermal conductivity and high reflectivity aluminum and copper foils. The results showed a dependence of drilled holes characteristics on laser power density and the number of laser pulses used. Drilled depth of 74 ϻm was obtained in aluminum at 11.036×108 W/cm2 of laser power density. Due to its higher melting point, copper required higher laser power density and/or larger number of laser pulses to melt, and a maximum depth of 25 μm was reached at 13.46×108 W/cm2 using single laser pulse.