In the present work, heterojunction diode detectors will be prepared using germanium wafers as a substrate material and 200 nm tin sulfide thickness will be evaporated by using thermal evaporation method as thin film on the substrate. Nd:YAG laser (λ=532 nm) with different energy densities (5.66 J/cm2 and 11.32 J/cm2) is used to diffuse the SnS inside the surface of the germanium samples with 10 laser shots in different environments (vacuum and distilled water). I-V characteristics in the dark illumination, C-V characteristics, transmission measurements, spectral responsivity and quantum efficiency were investigated at 300K. The C-V measurements have shown that the heterojunction were of abrupt type and the maximum value of build-in potential is equal to 1.78V in water environment .The results showed that the detectors have two peaks at 900 nm and 1250 nm and the maximum spectral responsivity can be obtained at λ=1250 nm in water environment. Also the quantum efficiency has two peaks at 900nm and 1250 nm and it is increase the increase in laser energy density and this increase is to be clear in the water environment more than the vacuum environment.
The CIGS/CdS p-n junction thin films were fabricated and deposited at room temperature with rate of deposition 5, and 6 nm secG1 , on ITO glass substrates with 1mm thickness by thermal evaporation technique at high vacuum pressure 2×10G5 mbar, with area of 1 cm2 and Aluminum electrode as back contact. The thickness of absorber layer (CIGS) was 1 µm while the thickness of the window layer CdS film was 300 nm. The X-ray Diffraction results have shown that all thin films were polycrystalline with orientation of 112 and 211 for CIGS thin films and 111 for CdS films. The direct energy gaps for CIGS and CdS thin films were 1.85 and 2.4 eV, respectively. Atomic Force Microscopy measurement proves that both films CIGS and CdS films have nanostru
... Show MoreSeveral types of laser are used in experimental works in order to study the effects of laser on blood vessel. They differ from each other by a lot of properties mainly in wavelength, energy of the laser and pulse duration. In this study argon laser (488 nm- 514 nm) and continuous Nd: YAG laSer (1064 nm), have been applied to 50 samples of sheep blgod tesselS. Histologically, tha results of the study were different According to the txpe of L`sar used; apgon larer had distrabtave effects on $he blood vessal while continuous Nd: YAG laser Appeaped to be the safesd one on the blmod vessel architecture. This study concluded that argoj laser has da-aging ef&ect on
... Show MoreIn this work; copper oxide films (CuO) were fabricated by PLD. The films were analyzed by UV-VIS absorption spectra and their thickness by using profilometer. Pulsed Nd:YAG laser was used for prepared CuO thin films under O2 gas environment with varying both pulse energy and annealing temperature. The optical properties of as-grown film such as optical transmittance spectrum, refractive index and energy gap has been measured experimentally and the effects of laser pulse energy and annealing temperature on it were studied. An inverse relationship between energy gap and both annealing temperature and pulse energy was observed.
The m-consecutive-k-out-of-n: F linear and circular system consists of n sequentially connected components; the components are ordered on a line or a circle; it fails if there are at least m non-overlapping runs of consecutive-k failed components. This paper proposes the reliability and failure probability functions for both linearly and circularly m-consecutive-k-out-of-n: F systems. More precisely, the failure states of the system components are separated into two collections (the working and the failure collections); where each one is defined as a collection of finite mutual disjoint classes of the system states. Illustrative example is provided.
Zinc sulfide (ZnS) thin films were deposited on glass substrates using pulsed laser deposition technique. The laser used is the Q-switched Nd: YAG laser with 1064nm wavelength and 1Hz pulse repetition rate and varying laser energy 700mJ-1000mJ with 25 pulse. The substrate temperature was kept constant at 100°C. The structural, morphological and optical properties of ZnS thin films were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscope (AFM) and UV-VIS spectrophotometer.
Many conservative sphincter-preserving procedures had been described to be effective in
healing of anal fistula without excision or de roofing.
Objective: To verify the outcome of mere photocoagulation of the fistula tract on healing of low anal
fistula.
Materials and Methods: Using 810nm diode laser, the tracts of low anal fistulae in a cohorts of six male
patients (mean age of 32 yr) had been photocoagulated by retrograde application of laser light through an
orb tip optical fiber threaded in to the tract. Swabs for culture and sensitivity testing were obtained before
and after laser application. Patients were followed up regularly to announce fistula healing.
Results: Mean laser exposure time was 6.6 min., mean
Background: Since the invention of laser in 1960, lasers have been developed and approved in many fields. Lasers can now be regarded as practical tools with unique properties that have been utilized effectively in several applications in fields of medical and biological sciences.Objectives: The aim of the current study was to preparation of vaccines (live attenuated and killed) by irradiation of the bacteria by the low level diode laser.Methods: six bacterial isolates were isolated from human samples of diabetic foot infections, which used for preparation of vaccines. The experiment was conducted on fifteen adult male rabbits; they were divided into three groups with 5 rabbits each. Blood samples were collected from the marginal ear vein
... Show MoreSnS nanobelt thin films were deposited on glass substrates in acidic solution by chemical bath deposition (CBD) method. The belt-like morphologies of as-deposited SnS thin films were characterized by scanning electron microscope (SEM) and transmission electron microscopy (TEM). X-ray diffraction (XRD) and Raman measurements were carried out to confirm the crystal structures and phase purities of SnS nanobelt thin films. The morphologies and phase purities of SnS thin films were influenced greatly by the tin and sulfur precursors. The bandgaps of SnS nanobelts were determined to be 1.39–1.41 eV by UV–vis absorption and photoluminescence (PL) spectra. Current-voltage ((I-V)) and current-time ((I-T)) characteristics were studied to demon
... Show MoreThis study aims to analyze the spectral properties of plasma produced from rice husk(Rh) using the laser breakdown spectroscopy (LIBS) method. The plasma generation process used the fundamental harmonic (1064 nm) of a Q-switched Nd:YAG laser. Yttrium aluminum garnet (YAG) is a man-made crystalline material. The laser fired pulses with a duration of 10 ns and a repetition rate of 6 Hz. Thus, the energy outputs achieved were 50–200 mJ at the wavelength of 1064 (nm). The silica content in the rice hulls was verified using an XRF measurement, which revealed the presence of silica in the rice hulls in a high percentage. Precise beam focusing was achieved by focusing the laser on the target material. This target material is placed with
... Show More