Laser cleaning of materials’ surfaces implies the removal of deposited pollutants without affecting the material. Nanosecond Nd:YAG pulsed laser, operating at 1064 nm and 532nm, was utilized. Different laser intensities and number of pulses were used on metallic and non-metallic surfaces under O2 and Ar environments to remove metal oxide and crust. Cleaning efficiency was studied by optical microscope. The results indicated the superiority of 1064 nm over the 532 nm wavelength without any detectable damage to materials’ surfaces. Marble cleaned in Oxygen gas environment was better than in Ar gas.
An experimental study was carried out to improve the surface roughness quality of the stainless steel 420 using magnetic abrasive finishing method (MAF). Four independent operation parameters were studied (working gap, coil current, feed rate, and table stroke), and their effects on the MAF process were introduced. A rotating coil electromagnet was designed and implemented to use with plane surfaces. The magnetic abrasive powder used was formed from 33%Fe and 67% Quartz of (250µm mesh size). The lubricant type SAE 20W was used as a binder for the powder contents. Taguchi method was used for designing the experiments and the optimal values of the selected parameters were found. An empirical equation representing the r
... Show MoreWater pollution as a result of contamination with dye-contaminating effluents is a severe issue for water reservoirs, which instigated the study of biodegradation of Reactive Red 195 and Reactive Blue dyes by E. coli and Bacillus sp. The effects of occupation time, solution pH, initial dyes concentrations, biomass loading, and temperature were investigated via batch-system experiments by using the Design of Experiment (DOE) for 2 levels and 5 factors response surface methodology (RSM). The operational conditions used for these factors were optimized using quadratic techniques by reducing the number of experiments. The results revealed that the two types of bacteria had a powerful effect on biodegradable dyes. The regression analysis reveale
... Show MoreIn this work, the effect of partial amounts of gases in gas mixture of a CW CO2 laser on the output power was investigated. Also their effect on the condition determining the glow-discharge self-sustaining required for pumping the active medium was studied. Two fit relations were derived to predict the output laser power and the electric field to unit pressure ratio as functions to the partial amounts of gases. Results presented in this work could be used fruitfully to determine some of the optimum operational conditions of glow-discharge low-power CW CO2 lasers.
In this work, results of a mathematical analysis of the role of workpiece preheating in laser keyhole welding were presented. This analysis considered the steady-state welding as well as certain range of boundary conditions over which preheating effect would be indicated. This work is an attempt to interpret the role of preheating to increase welding depth and perform keyhole welding with high quality using physical and thermal properties of steel alloys.
We report here the observation of 16 µm superradiance laser action generated from optical pumping of CF4 gas molecules (which is cooled to 140 Kº by a boil-off liquid-N2) by a TEA-CO2 laser 9R12 line. Output laser pulses of 7 mJ and 200 ns have been obtained.
Introduction: This study was performed to compare the effect of Fractional CO2 laser or Q switched Nd:YAG laser of surface treatment on the shear bond strength of zirconia-porcelain interface. Methods: Fractional CO2 laser at 30 W, 2 ms, time interval 1 ms, distance between spots 0.3 mm, and number of scans is (4) or Q switched Nd:YAG laser at 30 J/mm2 and 10 Hz were used to assess the shear bond strength of zirconia to porcelain. Pre-sintered zirconia specimens were divided into three groups (n = 10) according to the surface treatment technique used: (a) untreated (Control) group; (b) CO2 group; (c) Nd:YAG group. All samples were then sintered and veneered with porcelain according to the manufacturer’s instructions. Surface morph
... Show MoreBackground: to evaluate the effect of different dentifrices on the surface roughness of two composite resins (nanofilled-based and nanoceramic – based composite resins). Materials and methods: Forty specimens (diameter 12 mm and height of 2mm) prepared from different composite resin materials: Z350 (nanofilled composite, and Ceram-X (nanoceramic) .they were subjected to brushing simulation equivalent to the period of 1 year. The groups assessed were a control group brushed with distilled water (G1), Opalescence whitening toothpasteR (G2), Colgate sensitive pro-relief (G3) and Biomed Charcoal Toothpaste (G4). The initial and final roughness of each group was tested by surface roughness tester. The results were statistically analyzed using
... Show More