The current standard for treating pilonidal sinus (PNS) is surgical intervention with excision of the sinus. Recurrence of PNS can be controlled with good hygiene and regular shaving of the natal cleft, laser treatment is a useful adjunct to prevent recurrence. Carbon dioxide (CO2) laser is a gold standard of soft tissue surgical laser due to its wavelength (10600 nm) thin depth (0.03mm) and collateral thermal zone (150mic).It effectively seals blood vessels, lymphatic, and nerve endings, Moreover wound is rendered sterile by effect of laser. Aim of this study was to apply and assess the clinical usefulness of CO2 10600nm laser in pilonidal sinus excision and decrease chance of recurrence. Design: For 10 patients, between 18 and 39 year old (28.5 ± 6.02), PNS excision under local anesthesia, using CO2 laser continuous mode, power 10 W, all cases closed primarily. Using laser system (KLS MARTIN 50plus, 10600nm). Results: no pain during operation but mild during first week, the operative field was dry, mild edema in 80% in 1st. Week, infection in one case, its excellent overall satisfaction throughout 2-4 weeks postoperative follow-up. Conclusion: The CO2 laser offers the following benefits; almost bloodless surgery; reduced risk of infection; less scarring; precisely controlled surgery, often faster than conventional approaches and therefore achieving short hospital stays.
Many conservative sphincter-preserving procedures had been described to be effective in
healing of anal fistula without excision or de roofing.
Objective: To verify the outcome of mere photocoagulation of the fistula tract on healing of low anal
fistula.
Materials and Methods: Using 810nm diode laser, the tracts of low anal fistulae in a cohorts of six male
patients (mean age of 32 yr) had been photocoagulated by retrograde application of laser light through an
orb tip optical fiber threaded in to the tract. Swabs for culture and sensitivity testing were obtained before
and after laser application. Patients were followed up regularly to announce fistula healing.
Results: Mean laser exposure time was 6.6 min., mean
This paper presents the theoretical and experimental results of drilling high density
polyethylene sheet with thickness of 1 mm using millisecond Nd:YAG pulsed laser. Effects of laser
parameters including laser energy, pulse duration and peak power were investigated. To describe and
understand the mechanism of the drilling process Comsol multiphysics package version 4.3b was used to
simulate the process. Both of the computational and experimental results indicated that the drilling
process has been carried out successfully and there are two phases introduced in the drilling process,
vaporization and melting. Each portion of these phases depend on the laser parameters used in the
drilling process
The photodynamic inactivation against Methicillin-resistant Staphylococcus aureus using two different lasers, 532 nm diode pumped solid state laser (DPSS) in combination with safranin O and 650 nm diode laser in combination with methylene blue was investigated in the present work. A hundred swab samples were collected from patients with burn and wound infections admitted to two hospitals in Baghdad (Specialized Burns Hospital in Medical City and Al Imamein Al Jwadein Medical City Hospital) from December 2015 to February 2016 Antimicrobial susceptibility was performed by using Kirby- Bauer method. The irradiation experiments included four groups; a control group, a photosensitizer only group, a laser irradiation only group and a laser irr
... Show MoreTo show the impact of 790-805 nm diode laser irradiations on wound healing as a supplementary treatment in women underwent episiotomies, and to assess the laser parameters that were used .Material and methods: Eighteen female patients were included in this study; all of them underwent mediolateral episiotomy. Ten patients received laser therapy- diode laser (K Laser) (790-805) nm in CW mode of operation (and eight patients were the control group. Spot size of 8mm, time for exposure for each spot was 30 seconds. The power used was 0.6 W .The power density for each spot of treatment was 1.19 W/cm2 per session (non contact mode of application of laser therapy).The group studied received 2 sessions of laser radiation, day 4, and day 8 after
... Show Morewe studied the effect of low level laser therapy (LLLT) using diode laser with wavelength of (790-805) nm in promotion and enhancement of wound healing of episiotomy and to evaluate the analgesic effect of LLLT in reducing the pain sensation caused by the episiotomy wounds. Nineteen women with episiotomy wound were selected and divided into three groups; 1st group (group No.1: control group) given antibiotics without laser therapy, in the 2nd group (group No.2) the wounds were exposed to laser therapy (4 sessions, each session with energy density of 19.90 J /cm2 every other day ) and systemic antibiotics were prescribed for 1 week. In the 3rd group (group No.3) the wounds were exposed to laser therapy (4 sessions, the same as in the 2nd
... Show MoreArtemia fransiscana is one of the most important live food for commercial larval aquaculture. The aim of this study is to investigate the effects of 890 nm diode laser irradiation on Artemia capsulated cysts using (1-10) minutes exposure time, and 2.26x10-3 J/cm2 Fluence. The Artemia samples were obtained from two locations: Dyalaa and Basraa. After irradiation, hatching percentage (H %) and hatching efficiency(HE) of Artemia were measured after 24 and 48 hours of incubation. The results of the effect of laser light on the capsulated cysts from Dyalaa showed that the optimum dose for enhancing (H %) after 24 hours of incubation is using 10 minutes exposure time, while after 48 hours of incubation the (H %) enhancement can be achieved
... Show MoreThe effect of 532nm Diode Pumped Solid State (DPSS) laser at power density of 5.234 W/cm2 on the growth of Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus was evaluated. These bacteria were isolated from samples taken from burn and infected wound areas of 55 patients admitted to the burn-wound unit in Al-Kindy teaching hospital in Baghdad during the period from October 2012 to March 2013. Each isolate was identified using microscopic, cultural and biochemical methods. A standard bacterial suspension was prepared for each isolate. Serial dilutions were then prepared and a dilution of 10-5 was selected. Irradiation experiments included four groups: (L-P-) bacterial suspension in saline solution, (L-P+) bacteria
... Show MoreOne of the troublesome duties in chemical industrial units is determining the instantaneous drop size distribution, which is created between two immiscible liquids within such units. In this work a complete system for measuring instantaneous droplet size is constructed. It consists of laser detection system (1mW He-Ne laser), drop generation system (turbine mixer unit), and microphotography system. Two immiscible liquids, water and kerosene were mixed together with different low volume fractions (0.0025, 0.02) of kerosene (as a dispersed phase) in water (as a continuous phase). The experiments were carried out at different rotational speed (1180- 2090 r.p.m) of the turbine mixer. The Sauter mean diameter of the drops was determined by la
... Show MoreThis paper presents a method of designing and constructing a system capable of acquiring
the third dimension and reconstructs a 3D shape for an object from multi images of that object using
the principle of active optical triangulation. The system consists of an illumination source, a photo
detector, a movement mechanism and a PC, which is working as a controlling unit for the hard ware
components and as an image processing unit for the object multi view raw images which must be
processed to extract the third dimension. The result showed that the optical triangulation method
provides a rapid mean for obtaining accurate and quantitative distance measurements. The final
result's analysis refers to the necessity of usin
The simulation of passively Q-switching is four non – linear first order differential equations. The optimization of passively Q-switching simulation was carried out using the constrained Rosenbrock technique. The maximization option in this technique was utilized to the fourth equation as an objective function; the parameters, γa, γc and β as were dealt with as decision variables. A FORTRAN program was written to determine the optimum values of the decision variables through the simulation of the four coupled equations, for ruby laser Q–switched by Dy +2: CaF2.For different Dy +2:CaF2 molecules number, the values of decision variables was predicted using our written program. The relaxation time of Dy +2: CaF2, used with ruby was
... Show More