The current standard for treating pilonidal sinus (PNS) is surgical intervention with excision of the sinus. Recurrence of PNS can be controlled with good hygiene and regular shaving of the natal cleft, laser treatment is a useful adjunct to prevent recurrence. Carbon dioxide (CO2) laser is a gold standard of soft tissue surgical laser due to its wavelength (10600 nm) thin depth (0.03mm) and collateral thermal zone (150mic).It effectively seals blood vessels, lymphatic, and nerve endings, Moreover wound is rendered sterile by effect of laser. Aim of this study was to apply and assess the clinical usefulness of CO2 10600nm laser in pilonidal sinus excision and decrease chance of recurrence. Design: For 10 patients, between 18 and 39 year old (28.5 ± 6.02), PNS excision under local anesthesia, using CO2 laser continuous mode, power 10 W, all cases closed primarily. Using laser system (KLS MARTIN 50plus, 10600nm). Results: no pain during operation but mild during first week, the operative field was dry, mild edema in 80% in 1st. Week, infection in one case, its excellent overall satisfaction throughout 2-4 weeks postoperative follow-up. Conclusion: The CO2 laser offers the following benefits; almost bloodless surgery; reduced risk of infection; less scarring; precisely controlled surgery, often faster than conventional approaches and therefore achieving short hospital stays.
Abstract
In this manuscript, a simple new method for the green synthesis of platinum nanoparticles (Pt NPs) utilizing F. carica Fig extract as reducing agent for antimicrobial activities was reported. Simultaneously, the microstructural and morphological features of the synthesized Pt NPs were thoroughly investigated. In particular, the attained Pt NPs exhibited spherical shape with diameter range of 5-30 nm and root mean square of 9.48 nm using Transmission Electron Microscopy (TEM) and Atomic Force Microscopy (AFM), respectively. Additionally, the final product (Pt NPs) was screened as antifungal and antibacterial agent against Candida and Aspergillus species as well as Gram-positive Staphyllococcus aureus and G
... Show MoreSeveral million tons of solid waste are produced each year as a result of construction and demolition activities around the world, and brick waste is one of the most widely wastes. Recently, there has been growing number in studies that conducted on using of recycling brick waste (RBW) to produce environmentally friendly concrete. The use of brick waste (BW) as potential partial cement or aggregate replacement materials is summarized in this review where the performance is discussed in the form of the mechanical strength and properties that related to durability of concrete. It was found that, because the pozzolanic activity of clay brick powder, it can be utilized as substitute for cement in replacement level up to 10%. Whereas,
... Show MoreBeta-irradiation effects on the microstructure of LDPE samples have been investigated
using Positron Annihilation Lifetime Technique (PALT). These effects on the orthopositronium
(o-Ps) Lifetime t3, the free positron annihilation lifetime 2 t , the free-volume
hole size (Vh) and the free volume fraction (fh) were measured as functions of Beta
irradiation - dose up to a total dose of 30.28 kGy.
The results show that the values of t3, Vh and fh increase gradually with increasing Beta
dose up to a total dose of 1.289 kGy, and reach a maximum increment of 17.4%, 32.8% and
5.86%, respectively, while t2 reachs maximum increment of 211.9% at a total dose of 1.59
kGy. Above these doses, the values show nonlinear changes u
There are serious environmental problems in all countries of the world, due to the waste material such as crushed clay bricks (CCB) and in huge quantities resulting from the demolition of buildings. In order to reduce the effects of this problem as well as to preserve natural resources, it is possible to work on recycling (CCB) and to use it in the manufacture of environmentally friendly loaded building units by replacing percentages in coarse aggregate by volume. It can be used as a powder and replacing of percentages in cement by weight and study the effect on the physical and mechanical properties of the concrete and the masonry unit. Evaluation of its performance through workability, dry density, compressive strength, thermal conduct
... Show MoreNanoparticles (NPs) have unique capabilities that make them an eye-opener opportunity for the upstream oil industry. Their nano-size allows them to flow within reservoir rocks without the fear of retention between micro-sized pores. Incorporating NPs with drilling and completion fluids has proved to be an effective additive that improves various properties such as mud rheology, filtration, thermal conductivity, and wellbore stability. However, the biodegradability of drilling fluid chemicals is becoming a global issue as the discharged wetted cuttings raise toxicity concerns and environmental hazards. Therefore, it is urged to utilize chemicals that tend to break down and susceptible to biodegradation. This research presents the pra
... Show MoreArtificial lift techniques are a highly effective solution to aid the deterioration of the production especially for mature oil fields, gas lift is one of the oldest and most applied artificial lift methods especially for large oil fields, the gas that is required for injection is quite scarce and expensive resource, optimally allocating the injection rate in each well is a high importance task and not easily applicable. Conventional methods faced some major problems in solving this problem in a network with large number of wells, multi-constrains, multi-objectives, and limited amount of gas. This paper focuses on utilizing the Genetic Algorithm (GA) as a gas lift optimization algorit
Phosphorus is usually the limiting nutrient for eutrophication in inland receiving waters; therefore, phosphorus concentrations must be controlled. In the present study, a series of jar test was conducted to evaluate the optimum pH, dosage and performance parameters for coagulants alum and calcium chloride. Phosphorus removal by alum was found to be highly pH dependent with an optimum pH of 5.7-6. At this pH an alum dosage of 80 mg/l removed 83 % of the total phosphorus. Better removal was achieved when the solution was buffered at pH = 6. Phosphorus removal was not affected by varying the slow mixing period; this is due to the fact that the reaction is relatively fast.
The dosage of calcium chloride and pH of solution play an importa