Water pollution has created a critical threat to the environment. A lot of research has been done recently to use surface-enhanced Raman spectroscopy (SERS) to detect multiple pollutants in water. This study aims to use Ag colloid nanoflowers as liquid SERS enhancer. Tri sodium phosphate (Na3PO4) was investigated as a pollutant using liquid SERS based on colloidal Ag nanoflowers. The chemical method was used to synthesize nanoflowers from silver ions. Atomic Force Microscope (AFM), Scanning Electron Microscope (SEM), and X-ray diffractometer (XRD) were employed to characterize the silver nanoflowers. This nanoflowers SERS action in detecting Na3PO4 was reported and analyzed concerning both shape and size using a 532 nm laser. We observed that the nanoflower's structure produced strong SERS signals. The increase in the SERS signal is related to the deposition of Na3PO4 molecules in the aggregated silver nanostructure in the solution. The concentration of Na3PO4 plays a main role in detection since the Raman signal becomes stronger as the concentration increases. The highest phosphate analytical enhancement factor obtained for SERS in colloidal nanoflowers was 1.7×103 at 0.7×10-6 M which was the lowest concentration.
This work aimed to design, construct and operate a new laboratory scale water filtration system. This system was used to examine the efficiency of two ceramic filter discs as a medium for water filtration. These filters were made from two different ceramic mixtures of local red clay, sawdust, and water. The filtration system was designed with two rotating interfered modules of these filters. Rotating these modules generates shear force between water and the surfaces of filter discs of the filtration modules that works to reduce thickness of layer of rejected materials on the filters surfaces. Each module consists of seven filtration units and each unit consists of two ceramic filter discs. The average measured hy
... Show MoreAn essential component of food production is nitrogen (N). Crops waste about half of the nitrogen fertilizer input, which is then released into the atmosphere as gas emissions or polluting of aquatic groups. It is necessary to reach manufacture stages that promote world food security in the absence of compromising quality. safety of the environment. It is estimated that by 2050, N pollution levels will have risen 150% from 2010 levels, with the The agricultural sector is responsible for 60% of this growth. In this review fertilizer Nitrogen should take into account while discussing air pollution caused by gases that contain nitrogen, which might result in issues like the greenhouse effect. Nopoint pollution, the involvement of farme
... Show MoreAn essential component of food production is nitrogen (N). Crops waste about half of the nitrogen fertilizer input, which is then released into the atmosphere as gas emissions or polluting of aquatic groups. It is necessary to reach manufacture stages that promote world food security in the absence of compromising quality. safety of the environment. It is estimated that by 2050, N pollution levels will have risen 150% from 2010 levels, with the The agricultural sector is responsible for 60% of this growth. In this review fertilizer Nitrogen should take into account while discussing air pollution caused by gases that contain nitrogen, which might result in issues like the greenhouse effect . Nopoint pollution, the involvement of farmer manag
... Show MoreAn investigation was conducted for the study of extraction of metal ions using aqueous biphasic systems. The extraction of iron, zinc and copper from aqueous sulphate media at different kinds of extractants SCN− , Cl- and I- , different values of pH of the feed solution, phase ratio, concentration of metals, concentration of extractant, concentration of polymer, and concentration of salt was investigated. Atomic absorption spectrophotometer was used to measure the concentration of iron, zinc and copper in the aqueous phase throughout the experiments. The results of the extraction experiments showed the use of SCN− as extractant, pH=2.5, phase ratio=1.5, concentration of metals 1g/l, concentration of extractant 0.06 %, concentration o
... Show MoreIn this research, Haar wavelets method has been utilized to approximate a numerical solution for Linear state space systems. The solution technique is used Haar wavelet functions and Haar wavelet operational matrix with the operation to transform the state space system into a system of linear algebraic equations which can be resolved by MATLAB over an interval from 0 to . The exactness of the state variables can be enhanced by increasing the Haar wavelet resolution. The method has been applied for different examples and the simulation results have been illustrated in graphics and compared with the exact solution.
Fluidization process is widely used by a great assortment of industries worldwide and represents a trillion dollar industry [6]. They are currently used in separation, classification, drying and mixing of particles, chemical reactions and regeneration processes; one of these processes is the mass transfer from an immersed surface to a gas fluidized bed
I
In this study, optical fibers were designed and implemented as a chemical sensor based on surface plasmon resonance (SPR) to estimate the age of the oil used in electrical transformers. The study depends on the refractive indices of the oil. The sensor was created by embedding the center portion of the optical fiber in a resin block, followed by polishing, and tapering to create the optical fiber sensor. The tapering time was 50 min. The multi-mode optical fiber was coated with 60 nm thickness gold metal. The deposition length was 4 cm. The sensor's resonance wavelength was 415 nm. The primary sensor parameters were calculated, including sensitivity (6.25), signal-to-noise ratio (2.38), figure of merit (4.88), and accuracy (3.2)
... Show MoreHypothesis Nanofluid flooding has been identified as a promising method for enhanced oil recovery (EOR) and improved Carbon geo-sequestration (CGS). However, it is unclear how nanoparticles (NPs) influence the CO2-brine interfacial tension (γ), which is a key parameter in pore-to reservoirs-scale fluid dynamics, and consequently project success. The effects of pressure, temperature, salinity, and NPs concentration on CO2-silica (hydrophilic or hydrophobic) nanofluid γ was thus systematically investigated to understand the influence of nanofluid flooding on CO2 geo-storage. Experiments Pendant drop method was used to measure CO2/nanofluid γ at carbon storage conditions using high pressure-high temperature optical cell. Findings CO2/nano
... Show More