Water pollution has created a critical threat to the environment. A lot of research has been done recently to use surface-enhanced Raman spectroscopy (SERS) to detect multiple pollutants in water. This study aims to use Ag colloid nanoflowers as liquid SERS enhancer. Tri sodium phosphate (Na3PO4) was investigated as a pollutant using liquid SERS based on colloidal Ag nanoflowers. The chemical method was used to synthesize nanoflowers from silver ions. Atomic Force Microscope (AFM), Scanning Electron Microscope (SEM), and X-ray diffractometer (XRD) were employed to characterize the silver nanoflowers. This nanoflowers SERS action in detecting Na3PO4 was reported and analyzed concerning both shape and size using a 532 nm laser. We observed that the nanoflower's structure produced strong SERS signals. The increase in the SERS signal is related to the deposition of Na3PO4 molecules in the aggregated silver nanostructure in the solution. The concentration of Na3PO4 plays a main role in detection since the Raman signal becomes stronger as the concentration increases. The highest phosphate analytical enhancement factor obtained for SERS in colloidal nanoflowers was 1.7×103 at 0.7×10-6 M which was the lowest concentration.
The health of Roadway pavement surface is considered as one of the major issues for safe driving. Pavement surface condition is usually referred to micro and macro textures which enhances the friction between the pavement surface and vehicular tires, while it provides a proper drainage for heavy rainfall water. Measurement of the surface texture is not yet standardized, and many different techniques are implemented by various road agencies around the world based on the availability of equipment’s, skilled technicians’ and funds. An attempt has been made in this investigation to model the surface macro texture measured from sand patch method (SPM), and the surface micro texture measured from out flow time (OFT) and British pendul
... Show MoreBackground: Polyetheretherketone (PEEK) is a promising implant material due to its superior biomechanical strength. However, due to its hydrophobic nature and lack of cellular adhesion properties, it has poor integration with bone tissue. Methods: A fractional CO2 laser was used with various parameters for surface texturing of PEEK substrate to enhance its surface properties. An optical microscope and field-emission scanning electron microscope (FESEM) were used to examine the surface morphology of untextured and laser-textured samples. Energy dispersive X-ray spectroscopy (EDX) was performed to determine the effect of the laser on the microstructure of PEEK. Surface microroughness, atomic force microscopy (AFM), and wettability were invest
... Show MoreThe influence of sensing element length of no-core fiber strain sensor has been studied and experimentally demonstrated, four different lengths of 125 μm diameter no-core fiber is fused between two standard single-mode fibers and bi-directionally strained, the highest obtained sensitivity was around 16.37 pm με -1 which was exhibited in the shortest no-core fiber segment, to the best of our knowledge this is the first study of the influence of no-core fiber strain sensors length on sensor sensitivity. The proposed sensor can be used in many opto-mechanical applications such as, structural health monitoring, aerospace vehicles and airplane components monitoring.
The new novel polymers nanocomposites based modified chitosan (CS) blending with polyvinyl alcohol (PVA) and coated gold or silver nanoparticles (AuNPs), AgNPs) were synthesized from many sequence reactions as presented in (Scheme1, 2 and 3). By utilizing 1H-NMR spectroscopy, FTIR, and Field Emission Scanning electron microscope , the synthesized compounds have been identified. Molecular docking is studied, where operations are used to predict the binding status of compounds with the enzyme and to calculate the free energy (ΔG) of the compounds prepared. Also, the antibacterial activity regarding the synthesized compounds against two resistant pathogenic bacteria (G+) S. aureus and E. coli (G-) was examined in vitro compare with standard a
... Show MoreIn this work, silver nanoparticles (AgNPs) were biosynthesized from leaves of Ziziphus mauritiana Lam. jujube plant in Iraq and tested against fungal pathogens. Extract of leaves of Z. mauritiana mixed with 10-3 M AgNO3exposed to slight sunlight for 3 days. Characterization of AgNPs was done using UV-visible spectroscopy, SPM (scanning probe microscopy) and atomic force microscopy (AFM). The change of solution color from pale brown to dark brown and the exhibited maximum peak at 445 nm accepted as an indicator to biosynthesized AgNPs. Aqueous extract of Ziziphus mauritiana is considered as biological reduced and stabilized agent for Ag+ to Ag0. AFM showed the formation of irregular shapes of AgNPs. The biosynthesized silver nanoparticles ha
... Show MoreBackground: elastomeric impression materials are indicated when a high degree of accuracy is required, due to their excellent properties like details reproduction, dimensional stability and tear strength but with main two disadvantages those are their hydrophilicity as well as the absence of antibacterial activity. This study aimed to evaluate the effect of incorporation of 0.5% wt Ag-Zn zeolite into condensation silicone through the following tests; setting time, dimensional stability, reproduction of details, wettability, and hardness . Materials and methods: one hundred specimens were constructed of condensation silicone, divided into two groups for the first 50 specimens one0.5% by wt Ag -Zn zeolite was added, keeping the other fifty sp
... Show MoreThis study investigates the influence of silver oxide (Ag2O) concentration on the optical characteristics of phosphate bioactive glasses (PBGs). PBGs have emerged as promising alternatives to conventional silicate glasses in the medical field due to their excellent bioactivity and chemical resistance. Samples with varying Ag2O concentrations (0, 0.25, 0.5, and 0.75g) were sintered at 780°C for 2 hrs in an electric furnace. The samples were subjected to Fourier transfer infrared spectroscopy (FTIR), ultraviolet-visible (UV-Vis) spectroscopy, and photoluminescence (PL) tests to assess their functional groups and optical properties. By analyzing the FTIR spectrum of phosphate bioactive glass containing different amounts of Ag2O, it is
... Show More