This article showcases the development and utilization of a side-polished fiber optic sensor that can identify altered refractive index levels within a glucose solution through the investigation of the surface Plasmon resonance (SPR) effect. The aim was to enhance efficiency by means of the placement of a 50 nm-thick layer of gold at the D-shape fiber sensing area. The detector was fabricated by utilizing a silica optical fiber (SOF), which underwent a cladding stripping process that resulted in three distinct lengths, followed by a polishing method to remove a portion of the fiber diameter and produce a cross-sectional D-shape. During experimentation with glucose solution, the side-polished fiber optic sensor revealed an adept detection sensitivity of 0.2015 au. /RIU. In order to improve sensitivity, a recent sensor was subjected to a coating process utilizing a thin film layer of gold (Au) measuring a thickness of 50 nm. The sensor was subsequently subjected to a series of tests utilizing the same glucose solutions as in previous experiments. A notable enhancement in sensitivity was observed when utilizing gold as the sensing material, with an equivalent maximum sensitivity of 3.101 au. /RIU.
Purpose: The concept of complete street is one of the modern trends concerned with diversifying means of transportation and reducing the disadvantages of mechanical transportation modes. This paper discusses the role of complete streets can play in developing the urban environment in the Alyarmok District of Baghdad. Method/design/approach: The linear regression method used to analyze the opinions of 100 respondents surveyed in the study area in order to find the relationship between the urban environment and the complete street elements. Theoretical framework: The Modern trends in urban planning aim to find alternatives to the policies of traditional transportation planning that focus on vehicular mobi
... Show MoreIn this article it is proved experimentally that the photon is a particle that has mass and constant wavelength by explaining the effect of refractive index on the wavelength and the natural mass of photon. It is very difficult to measure the mass of photon, a simple and easy process was proposed in this paper to calculate the mass length of photon in vacuum (Y) and in medium (Y*), by measuring the length of laser beam in air (Lair) and in medium (Lmed). A new method was postulated to calculate refractive index by using these relations (n = Y*/Y), and (n = Lmed / Lair) which supposed a new theory of light.
Zinc oxide thin films were deposited by chemical spray pyrolysis onto glass substrates which are held at a temperature of 673 K. Some structural, electrical, optical and gas sensing properties of films were studied. The resistance of ZnO thin film exhibits a change of magnitude as the ambient gas is cycled from air to oxygen and nitrogen dioxide
The telescope works to magnify images of distant objects in general, but it needs special optical elements to complete the task to the fullest. The telescope needs optimal balance values of the optical parameters used to produce the best image, such as the effective focal length and the diameter of the pupil aperture, which are combined in a single concept called the focal number. The ground-based binary telescope relies on special lenses and an exceptional prism to achieve a hybrid design that produces clear images of relatively distant terrestrial objects. The pupil diameter of the telescope is relatively large to ensure that the largest possible amount of light is received, and as a result, a good image is obtained.
In this wo
... Show MoreThe gas sensing properties of Co3O4and Co3O4:Y nano structures were investigated. The films were synthesized using the hydrothermal method on a seeded layer. The XRD, SEM analysis and gas sensing properties were investigated for Co3O4and Co3O4:Y thin films. XRD analysis shows that all films are polycrystalline in nature, having a cubic structure, and the crystallite size is (11.7)nm for cobalt oxide and (9.3)nm for the Co3O4:10%Y. The SEM analysis of thin films obviously indicates that Co3O4possesses a nanosphere-like structure and a flower-like structure for Co3O4:Y.The sensitivity, response time and recovery time to a H2S reducing gas were tested at different operating
... Show MoreThis study involved preparation of Graphene oxide (GO) and reduced graphene oxide (RGO) using Hummer method and chemical method respectively. These carbon nanomaterials were used as starting material to make novel functionalize with thiocarbohydrazide (TCH) which was prepared by reacting CS2 with hydrazine to form GO or RGO- 4-amino,5-substituted 1H,1,2,4 Triazole 5(4H) thion (ASTT) ,(GOT) and( RGOT) respectively via cyclocondensation reaction. Also MnO2 nanorod was prepared to form hybridized with GOT and RGOT. A commercial multiwall carbon nanotube (MWCNT) and functionalization with carboxylic groups' (f-MWCNT) and its nanocomposite with GOT were also prepared. All carbon nanomaterials were characterized with different techniques such as
... Show MoreAbstract: Reflection optical fibre Humidity sensor is presented in this work, which is based on no core fibre prepared by splicing a segment of no core fibre (NCF) at different lengths 1-6 cm with fixed diameter 125 µm and a single mode fibre (SMF). The range of humidity inside the chamber is controlled from 30% to 90% RH at temperature ~ 30 °С. The experimental result shows that the resonant wavelength dip shift decreases linearly with an increment of RH% and the sensitivity of the sensor increased linearly with an increasing in the length of NCF. However, a high sensitivity 716.07pm/RH% is obtained at length 5cm with good stability and reputability. Furthermore, the sensor is shif
... Show MoreThe experimental and numerical analysis was performed on pipes suffering large plastic deformation through expanding them using rigid conical shaped mandrels, with three different cone angles (15◦, 25◦, 35◦) and diameters (15, 17, 20) mm. The experimental test for the strain results investigated the expanded areas. A numerical solution of the pipes expansion process was also investigated using the commercial finite element software ANSYS. The strains were measured for each case experimentally by stamping the mesh on the pipe after expanding, then compared with Ansys results. No cracks were generated during the process with the selected angles. It can be concluded that the strain decreased with greater angles of con
... Show More