This article showcases the development and utilization of a side-polished fiber optic sensor that can identify altered refractive index levels within a glucose solution through the investigation of the surface Plasmon resonance (SPR) effect. The aim was to enhance efficiency by means of the placement of a 50 nm-thick layer of gold at the D-shape fiber sensing area. The detector was fabricated by utilizing a silica optical fiber (SOF), which underwent a cladding stripping process that resulted in three distinct lengths, followed by a polishing method to remove a portion of the fiber diameter and produce a cross-sectional D-shape. During experimentation with glucose solution, the side-polished fiber optic sensor revealed an adept detection sensitivity of 0.2015 au. /RIU. In order to improve sensitivity, a recent sensor was subjected to a coating process utilizing a thin film layer of gold (Au) measuring a thickness of 50 nm. The sensor was subsequently subjected to a series of tests utilizing the same glucose solutions as in previous experiments. A notable enhancement in sensitivity was observed when utilizing gold as the sensing material, with an equivalent maximum sensitivity of 3.101 au. /RIU.
The influence of sensing element length of no-core fiber strain sensor has been studied and experimentally demonstrated, four different lengths of 125 μm diameter no-core fiber is fused between two standard single-mode fibers and bi-directionally strained, the highest obtained sensitivity was around 16.37 pm με -1 which was exhibited in the shortest no-core fiber segment, to the best of our knowledge this is the first study of the influence of no-core fiber strain sensors length on sensor sensitivity. The proposed sensor can be used in many opto-mechanical applications such as, structural health monitoring, aerospace vehicles and airplane components monitoring.
Mass transfer was studied using a rotating cylinder electrode with different lengths of legs acting as turbulence promoters. Two types of rotating cylinder ,made of brass, were examined : an enhanced cylinder one, with four rectangular extensions 10 mm long, 10 mm wide, and 1mm thick, and an enhanced cylinder two with four longitudes 30 mm long,10 mm wide, and 1mm thick. The best performance was obtained for enhanced cylinder two at low rotation speeds while enhanced cylinder one was realized at high rotation speeds. The mass transfer enhancement as compared with a normal rotating cylinder electrode, devoid of promoters, is 53% or 58% higher. The enhancement percentage decreased as rotation speeds increased further, since, seemingly, ful
... Show MoreThis research study the effect of surface modification and copper (Cu) plating carbon fiber (CF) surface on the thermal stability and wettability of carbon fiber (CF)/epoxy (EP) composites. The TGA result indicates that the thermal-stability of carbon fiber may be enhanced after Cu coating CF. TGA curve showed that the treatment temperature was enhanced thermal stability of Ep/CF, this is due to the oxidation during heating. The Cu plating increased the thermal conductivity, this increase might be due to reduce in contact resistance at the interface due to chemical modification and copper plating and tunneling resistance.
The increase of surface polarity after coating cause decreas
... Show MoreLocalization is an essential demand in wireless sensor networks (WSNs). It relies on several types of measurements. This paper focuses on positioning in 3-D space using time-of-arrival- (TOA-) based distance measurements between the target node and a number of anchor nodes. Central localization is assumed and either RF, acoustic or UWB signals are used for distance measurements. This problem is treated by using iterative gradient descent (GD), and an iterative GD-based algorithm for localization of moving sensors in a WSN has been proposed. To localize a node in 3-D space, at least four anchors are needed. In this work, however, five anchors are used to get better accuracy. In GD localization of a moving sensor, the algo
... Show MoreTo show the impact of 790-805 nm diode laser irradiations on wound healing as a supplementary treatment in women underwent episiotomies, and to assess the laser parameters that were used .Material and methods: Eighteen female patients were included in this study; all of them underwent mediolateral episiotomy. Ten patients received laser therapy- diode laser (K Laser) (790-805) nm in CW mode of operation (and eight patients were the control group. Spot size of 8mm, time for exposure for each spot was 30 seconds. The power used was 0.6 W .The power density for each spot of treatment was 1.19 W/cm2 per session (non contact mode of application of laser therapy).The group studied received 2 sessions of laser radiation, day 4, and day 8 after
... Show More: In modern optical communication system, noise rejection multiple access interference (MAI) must be rejected in dense access network (DAN). This paper will study the dual optical band pass and notch filters. They will be extracted with tunable FWHM using 10cm (PMF) with different cladding diameters formed with etching 125μm PMF after immersing it with 40% of hydrofluoric acid (HF). This fiber acts as assessing fiber to perform Sagnac interferometer with splicing regions that placed 12cm (SMF) for performing hybrid Sagnac interferometer that consists of Mach-Zehnder instead of Sagnac loop which is illuminated by using laser source with centroid wavelength of 1546.7nm and FWHM of 286 pm or 9 ns in the time domain. . Firs
... Show MoreIn this work silicon solar cell has been used with semicircular grooves to improve its efficiency by reducing reflection of rays and increasing optical path through the cell. Software program for optical design (zemax) has been used by ray tracing mode to evaluate prototype efficiency when using detector beneath the cell. The prototype has aspect ratio (A.R=0.2) which is the best efficiency at incident angle (ϴ=0ͦ) and the best acceptance angle (ϴ=50ͦ).
The production and analysis of an optimal interference pattern for the optical fiber interferometer of a 193.1THz continuous laser source was simulated by comparing the spectral spectroscopy of the two arms of interferometer to be used as a heterodyne detection in sensing the body range, speed, and direction of movement by delaying the time between the arms.
The study showed that the fringe pattern can be sensed a range by the free spectral range FSR and the velocity by the fringe separation FS and the direction by the fringe spatial frequency FSF.
Polyaniline organic Semiconductor polymer thin films have been prepared by oxidative polymerization at room temperature, this polymer was deposited on glass substrate with thickness 900nm, FTIR spectra was tested , the structural,optical and electrical properties were studied through XRD ,UV-Vis ,IR measurements ,the results was appeared that polymer thin film sensing to NH3 gas.
In wide range of chemical, petrochemical and energy processes, it is not possible to manage without slurry bubble column reactors. In this investigation, time average local gas holdup was recorded for three different height to diameter (H/D) ratios 3, 4 and 5 in 18" diameter slurry bubble column. Air-water-glass beads system was used with superficial velocity up to 0.24 m/s. the gas holdup was measured using 4-tips optical fiber probe technique. The results show that the axial gas holdup increases almost linearly with the superficial gas velocity in 0.08 m/s and levels off with a further increase of velocity. A comparison of the present data with those reported for other slurry bubble column having diameters larger than
... Show More