Abstract: Background: Staphylococcus aureus is Gram-positive bacteria that lives as a normal flora in living organisms but can be pathogenic to humans. Although a relatively unspectacular, nonmotile coccoid bacterium, S. aureus is a dangerous human pathogen in both community-acquired and nosocomial infections. Due to the increasing emergence of new strains of this antibiotic-resistant bacteria, it has become essential to approach different methods to control this pathogen. One of these methods is the antimicrobial photodynamic inactivation process using a low-level laser, in this paper, the Photodynamic effects of Rose Bengal and LLLL on the virulence factors of S.aureus were evaluated. The aim of the study The present study aims to evaluate the Photodynamic effects on S. aureus using laser irradiation and Rose Bengal as an external photosensitizer. Methods: sixty samples from sputum were taken. Then ten isolated from these samples were chosen to be under the study, where RB was used at a concentatin of 100 μg/ml that is activated by diode laser (532 nm) with power density of 1 W/m2and exposure time (1, 2& 3) minute. Results: show that there is no effect on the inhibition of virulence factors except at the last minute, that is, the virulence factors decrease at the third minute only in the absence of a photosensitizer agent, while there is a direct effect of activated Rose Bengal on S. aureus isolated from the sputum of Iraqi patients with pneumonia, where all times of exposure of (RB + 532 nm) were effect on the virulence factors by inhibiting it. Conclusions: show that the diode laser of 532 nm has no effect on the virulence factor of S. aureus isolated from sputum except at the third minute, while RB activated by diode laser (532 nm) have an effective action on all virulence factors of S. aureus isolated from sputum at all times of exposure, accordingly, it was concluded that when using a laser diode alone, the bacterial viability decreases at the third minute only, While when using Rose Bengal activated by a diode laser, the viability of bacteria is reduced at all times of exposure.
A variety of oxides were examined as additives to a V2O5/Al2O3 catalyst in order to enhance the catalytic performance for the vapor phase oxidation of toluene to benzoic acid. It was found that the modification with MoO3 greatly promoted the little reaction leading to improve catalyst performance in terms of toluene conversion and benzoic acid selectivity. The effect of catalyst surface area, catalyst promoters, reaction temperature, O2/toluene, steam/toluene, space velocity, and catalyst composition to catalyst performance were examined in order to increase the benzoic acid selectivity and yield.
The most used material in the world after water is concrete, which depends mainly on its manufacture of cement leading to the emission of carbon dioxide (CO2), flying dust, and other greenhouse gasses (GHGs) resulting in pollution of the atmosphere. The emission of CO2 from cement production is approximately 5% of the global anthropogenic CO2. This research focuses on investigating the amount of CO2 emission from the Iraqi General Cement Company plants includes the cement factories of Kirkuk, Al-Qa’em, Fallujah, and Kubaisa, using the GHGs Protocol Measures Program (specifically cement based-method).
Many of mechanical systems are exposed to undesired vibrations, so designing an active vibration control (AVC) system is important in engineering decisions to reduce this vibration. Smart structure technology is used for vibration reduction. Therefore, the cantilever beam is embedded by a piezoelectric (PZT) as an actuator. The optimal LQR controller is designed that reduce the vibration of the smart beam by using a PZT element.
In this study the main part is to change the length of the aluminum cantilever beam, so keep the control gains, the excitation, the actuation voltage, and mechanical properties of the aluminum beam for each length of the smart cantilever beam and observe the behavior and effec
... Show MoreIn this research, geopolymer mortar had to be designed with 50% to 50% slag and fly ash with and without 1% micro steel fiber at curing temperature of 240℃. The molarity of alkaline solution adjusted with 12 molar sodium hydroxid to sodium silicate was 2 to 1, reaspectivly. The heat of curing increased the geopolymerization proceses of geoplymer mortar, which led to increasing strength, giving the best result and early curing age. The heat was applied for two days by four hours each day. It was discovered in the impact test that the value first crack of each mix was somewhat similar, but the failure increased 72% for the mixture that did not contain fiber. For the energy observation results it was shown that the mixt
... Show MoreThe removal of boron from aqueous solution was carried out by electrocoagulation (EC) using magnesium electrodes as anode and stainless steel electrodes as cathode. Several operating parameters on the removal efficiency of boron were investigated, such as initial pH, current density, initial boron ion concentration, NaCl concentration, spacing between electrodes, electrode material, and presence of carbonate concentration. The optimum removal efficiency of 91. 5 % was achieved at a current density of 3 mA/cm² and pH = 7 using (Mg/St. St. ) electrodes, within 45 min of operating time. The concentration of NaCl was o. 1 g/l with a 0.5cm spacing between the electrodes. First and second order rate equation were applied to study adsorp
... Show More
In past years, structural pavement solution has been combined with destructive testing; these destructive methods are being replaced by non-destructive testing methods (NDT). Because the destructive test causes damage due to coring conducted for testing and also the difficulty of adequately repairing the core position in the field. Ultrasonic pulse velocity was used to evaluate the strength and volumetric properties of asphalt concrete, of binder course. The impact of moisture damage and testing temperature on pulse velocity has also been studied. Data were analyzed and modeled. It was found that using non-destructive testing represented by pulse velocity could be useful to predict the quality of asphalt c
... Show MoreThe degradation and mineralization of 4-chlorophenol (4-CP) by advanced oxidation processes (AOPs) was investigated in this work, using both of UV/H2O2 and photo-Fenton UV/H2O2/Fe+3 systems.The reaction was influenced by the input concentration of H2O2, the amount of the iron catalyst, the type of iron salt, the pH and the concentration of 4-CP. A colored solution of benzoquinon can be observed through the first 5 minutes of irradiation time for UV/H2O2 system when low concentration (0.01mol/L) of H2O2 was used. The colored solution of benzoquinon could also be observed through the first 5 minutes for the UV/H2O2/Fe+3 system at high
concentration (100ppm) of 4-CP. The results have shown that adding Fe+3 to the UV/H2O2 system enhanced
Nicotine was separated from eggplant and green pepper seeds (Solanaceous) by High Performance Liquid Chromatography (HPLC).The concentration of nicotine in the eggplant extract (0.871-0.877 μg/ml) was determined by injecting standard material with 0.5 and 1.5 μg/ml, while the concentrations of nicotine in green pepper extract (0.613-0.618 μg/ml) was determined when the standard material was injected with 0.5 and 1.5 μg/ml. The qualitative chemical data was calculated from derivations of the standard material. Nicotine concentration was measured qualitatively in both extracts through the calibration curve and method of the standard addition. This technique has high accuracy and compatibility, bringing the proportion of relati
... Show MoreIn this study, the response and behavior of machine foundations resting on dry and saturated sand was investigated experimentally. In order to investigate the response of soil and footing to steady state dynamic loading, a physical model was manufactured to simulate steady state harmonic load at different operating frequencies. Total of 84 physical models were performed. The footing parameters are related to the size of the rectangular footing and depth of embedment. Two sizes of rectangular steel model footing were tested at the surface and at 50 mm depth below model surface. Meanwhile the investigated parameters of the soil condition include dry and saturated sand for two relative densities 30% and 80%. The response of the footing was ela
... Show More