Abstract Additive manufacturing has been recently emerged as an adaptable production process that can fundamentally affect traditional manufacturing in the future. Due to its manufacturing strategy, selective laser melting (SLM) is suitable for complicated configurations. Investigating the potential effects of scanning speed and laser power on the porosity, corrosion resistance and hardness of AISI 316L stainless steel produced by SLM is the goal of this work. When compared to rolled stainless steel, the improvement is noticeable. To examine the microstructure of the samples, the optical microscopy (OM), scanning electron microscopy (SEM), and EDX have been utilized. Hardness and tensile strength were used to determine mechanical properties. The results indicated that the samples were completely dissolved, and the hardness was 285HV. Compared with the models produced by other parameters, the best 0.3% porosity was obtained using 100 W laser power, a hatching distance of 70 µm, a layer thickness of 30µm, and a scanning speed of 600 mm/sec. In addition, the volumetric energy density value for the best result was 79 J/mm3.
Numerical simulation of charge density produced in plasma actuators is dependent upon the development of models dealing with electrical properties. The main aim of this work is to investigate the characteristics surface charge density and space charge density of DBD plasma actuator. A simple design of surface dielectric barrier discharge plasma actuator is used in the study. The discharge gas was N2:H2 mixture with applied voltage equal to 1.5 kV. A theoretical plasma model is used to establish the charge density details. Results show that surface charge density increased in value and spread in width alone the exposed electrode as the voltage increased and reached to the amplitude value.
The hydrolysis of urea by the enzyme urease is significant for increasing the irroles in human pathogenicity, biocementation, soil fertilizer, and subsequently in soil improvement. This study devoted to the isolation of urease from urea-rich soil samples collected from seven different locations. Isolation of the various bacterial species was conducted using nutrient agar. The identity of isolated urease was based on morphological characteristics and standard microbiological and biochemical procedures. The urease producing strains of bacteria were obtained using the urease hydrolysis test. The bacterial isolates produced from soil samples collected from different environments and treat
Estimation of mechanical and physical rock properties is an essential issue in applications related to reservoir geomechanics. Carbonate rocks have complex depositional environments and digenetic processes which alter the rock mechanical properties to varying degrees even at a small distance. This study has been conducted on seventeen core plug samples that have been taken from different formations of carbonate reservoirs in the Fauqi oil field (Jeribe, Khasib, and Mishrif formations). While the rock mechanical and petrophysical properties have been measured in the laboratory including the unconfined compressive strength, Young's modulus, bulk density, porosity, compressional and shear -waves, well logs have been used to do a compar
... Show MoreThe printed circuit heat exchanger is a plate type heat exchanger with a high performance and compact size. Heat exchangers such as this need a unique form of bonding and other techniques to be used in their construction. In this study, the process of joining plates, diffusion bonding, was performed and studied. A special furnace was manufactured for bonding purposes. The bonding process of copper metal was carried out under specific conditions of a high temperature up to 700 oC, high pressure of 3.45 MPa, and in an inert environment (Argon gas) to make tensile samples. The tensile samples are cylindrical shapes containing groves representing the flow channels in the printed circuit heat exchanger and checking their tensile st
... Show MoreNew membrane electrodes for determination of ciprofloxacin hydrochloride were prepared depending on ciprofloxacin hydrochloride - phosphotungstic acid (CFH-PT) as an active material and these electrodes were made with three plasticizers: Di-octylphenylphosphonate(DOPH), Di-butyl phosphate (DBP)Tri-n-butyl phosphate(TBP), in PVC matrix. One of the ciprofloxacin electrodes was gave Nernstian slope equal to 57.21 mV/ decade for DOPH membrane with concentration range from 1.5×10-5 to1.0×10-1 M, and detection limit equal to 1.5×10-6 M .Lifetime was 93 days. Non- Nernstian responses equal to 39.40 and 30.70 mV/ decade for membranes DBP, TBP, respectively. These electrodes were gave concentration range from 1.0× 10-5 to 1.0×10-2 and from 4.0
... Show MoreIn the present study a series of some four-,five-and seven-membered heterocyclic compounds have been synthesized by the reaetion of Schiff bases (1a,b) with chloroacetyl chloride, sodium azide, thioglycolic acid or various anhydrides to give azetidinone (2a,b), tetrazole (3a,b), thiazolidinone (4a,b) and 1,3-oxazepine derivatives (5-8a,b) respectively. Schiff bases (1a,b)were prepared from the reaction of p-toluidine with aromatic aldehydes. All synthesized compounds were characterized by physical properties and spectral data.
Kinetic and mechanism studies of the oxidation of oxalic acid by Cerium sulphate have been carried out in acid medium sulphuric acid. The uv- vis. Spectrophotometric technique was used to follow up the reaction and the selected wavelength to be followed was 320 nm. The kinetic study showed that the order of reaction is first order in Ce(IV) and fractional in oxalic acid. The effect of using different concentration of sulphuric acid on the rate of the reaction has been studied a and it was found that the rate decreased with increasing the acid concentration. Classical organic tests was used to identify the product of the oxidation reaction, the product was just bubbles of CO2.
