Abstract Additive manufacturing has been recently emerged as an adaptable production process that can fundamentally affect traditional manufacturing in the future. Due to its manufacturing strategy, selective laser melting (SLM) is suitable for complicated configurations. Investigating the potential effects of scanning speed and laser power on the porosity, corrosion resistance and hardness of AISI 316L stainless steel produced by SLM is the goal of this work. When compared to rolled stainless steel, the improvement is noticeable. To examine the microstructure of the samples, the optical microscopy (OM), scanning electron microscopy (SEM), and EDX have been utilized. Hardness and tensile strength were used to determine mechanical properties. The results indicated that the samples were completely dissolved, and the hardness was 285HV. Compared with the models produced by other parameters, the best 0.3% porosity was obtained using 100 W laser power, a hatching distance of 70 µm, a layer thickness of 30µm, and a scanning speed of 600 mm/sec. In addition, the volumetric energy density value for the best result was 79 J/mm3.
Laser beam has been widely used to improve the mechanical properties of the metals. It used for cutting, drilling, hardening, welding……etc. The use of Laser beam has many features in accuracy and speeding in work, also in the treatment of metals locally, and in the places that is hard to reach by traditional ways. In this research a surface treatment was done to medium carbon steel (0.4%C) which is common kind of steel that is used in industry. Pulsing Neodymium -YAG Laser has been used and 1.06 micrometer wave length and 5 msec and the distance is about 30 centimeter between the exit area of the Laser beam from the system and the piece that treated . We are going to check the fatigue resistance for samples that is
... Show MoreThe microdrilling and nanodrilling holes are produced by a Q-switched Nd :YAG laser (1064 nm) interaction with 8009 Al alloy using nanoparticles. Two kinds of nanoparticles were used with this alloy. These nanoparticles are tungsten carbide (WC) and silica carbide (SiC). In this work, the microholes and nanoholes have been investigated with different laser pulse energies (600, 700 and 800)mJ, different repetition rates (5Hz and 10Hz) and different concentration of nanoparticles (90%, 50% and 5% ). The results indicate that the microholes and nanoholes have been achieved when the laser pulse energy is 600 mJ, laser repetition rate is 5Hz, and the concentration of the nanoparticles (for the two types of n
... Show MoreThe current study deals with the performance of constructed wetland (CW) incorporating a microbial fuel cell (MFC) for wastewater treatment and electricity generation. The whole unit is referred to as CW-MFC. This technique involves two treatments; the first is an aerobic treatment which occurs in the upper layer of the system (cathode section) and the second is anaerobic biological treatment in the lower layer of the system (anode section). Two types of electrode material were tested; stainless steel and graphite. Three configurations for electrodes arrangement CW-MFC were used. In the first unit of CW-MFC, the anode was graphite plate (GPa) and cathode was also graphite plate (GPc), in the second CW-MFC unit, the anode was stainless st
... Show MoreThe effect of the magnetic abrasive finishing (MAF) method on the temperature rise (TR), and material removal rate (MRR) has been investigated in this paper. Sixteen runs were to determine the optimum temperature in the contact area (between the abrasive powder and surface of workpiece) and the MRR according to Taguchi orthogonal array (OA). Four variable technological parameters (cutting speed, finishing time, working gap, and the current in the inductor) with four levels for each parameter were used, the matrix is known as a L16 (44) OA. The signal to noise ratio (S/N) ratio and analysis of the variance (ANOVA) were utilized to analyze the results using (MINITAB17) to find the optimum condition and identify the significant p
... Show MoreThis work aimed to study the effect of laser surface treatment on the mechanical characteristics and corrosion behaviour of grey cast iron type A159. Many technical applications used conventional surface treatment, but laser surface hardening has recently been used to enhance the surface properties of many alloys. The mechanical characteristics, including microstructure, microhardness, and wear resistance of A159 grey cast iron, were studied, in addition to corrosion behaviour. The experimental laser parameters in this work were 0.9, 1.2, and 1.5 KW power with continuous wave carbon dioxide lasers with scanning speeds of 10 and 12 mm/s were used. The results found that phase-transitional alterations in microstructure were influenced by lase
... Show MoreWhen laser light incident on biological tissue, it is either reflected from the
surface of the tissue (e.g. the skin) or scattered inside the tissue or absorbed .The laser light will be
absorbed by water, hemoglobin and melanin. Absorption is also highly dependent on wave-length of
laser radiation. The absorbed light is converted into kinetic energy leading to laser effect that when
appropriately applied can produce reaction ranging from incision, vaporization to coagulation. Aim of
the study: To evaluate the efficiency of diode Laser 810 ± 20nm in treatment of oral lesions. Methods:
6 patients (2 females and 4 males) with different oral lesions were treated in the hospital of specialized
surgeries by the use of dio
Breast mass is by far the most important clinical problem that concerns the breast today. This study was carried out to evaluate diode laser as a cutting tool in breast mass excision and as a hemostatic tool for coagulation during surgery. Using 810 nm diode laser with optical fiber 600μm in diameter of conical tip, udder (cow's breast) tissue, and three female patients (mean age of 35.5 y with clinically palpable breast mass) had been used in this study. The patients were followed up regularly postoperatively. In preliminary work on udder tissue, the power needed for cutting and excision was 15W (power density= 5.3 kW/cm2). The time consumed for excision of a piece of udder tissue, 40×10×3 mm in dimensions was 5 min. The depth range
... Show MoreBackground: Due to the variations in tooth anatomy and size among different populations, this study aimed to compare the mesiodistal width of primary second molars in Iraqi children with the mesiodistal width of stainless-steel crowns from different companies. Materials and Methods: This cross-sectional study was conducted on 220 intact maxillary and mandibular primary second molars selected from boys and girls’ Iraqi children aged 8-9 years collected from different primary schools in Baghdad city. The mesiodistal dimensions of the selected teeth and the available maxillary and mandibular stainless-steel crowns from three different companies were measured by using a 3-D scanner, and then the whole measurements were calculated usin
... Show More