Aim: surface modification of titanium using fiber laser 1064 nm to enhance the bond strength to resin cement. Material and Methods: thirty titanium discs of 0.6 cm x 0.3 cm (diameter and thickness respectively) were categorized after preparation into three groups (n=10) as follows: control group with no surface treatment and two test groups were treated with fiber laser after estimation the appropriate parameters in the pilot study which are 81 ns pulse duration, 30,000 Hz frequency, 50 µm spot size and 10,000 mm/s scanning speed and different average power values (10 W and 20 W) depending on the tested group. Titanium discs surface characterization was performed by scanning electron microscope (SEM), and surface roughness tester. Following these tests, resin cement application to titanium discs was performed. Shear bond strength (SBS) values were determined by universal testing machine. ANOVA and Tukey HSD tests were used for analyzing of data (α = 0.05).Results: Higher average surface roughness (Ra) value was observed in (10 W) group followed by (20 W) group and the lowest surface roughness value was in the control group, additionally lowest SBS value was obtained from the control group and the highest SBS value was obtained from (20 W) group followed by (10 W) group. Conclusion: bond strength between titanium and resin cement can be significantly enhanced by using fiber laser as a surface treatment. Average power of fiber laser is essential parameter in enhancing the roughness of titanium surface and bonding to resin cement.
Background: The bond strength of the root canal sealers to dentin is very important property for maintaining the integrity and the seal of root canal filling. The aim of this study was to evaluate and compare the push-out bond strength of root filled with total fill Bioceramic, AH Plus and Gutta-flow®2 sealers using GuttaFusion®obturation system versus single cone obturation technique. Materials and method: sixty of mandibular premolars teeth with straight roots were used in this study, these roots were instrumented using Reciproc system, instrumentation were done with copious irrigation of 3 mL 5.25% sodium hypochlorite solution (NaOCl) during all the steps of preparation, and smear layer will be removed with 1 ml of 17% EDTA kept in
... Show MoreObjective(s): To determine the effect of obesity and socioeconomic status upon adolescents' high school students' intelligence quotient in Baghdad City. Methodology: A descriptive design is carried throughout the study to determine the effect of obesity and socioeconomic status on adolescents' high schools students' intelligence quotient in Baghdad City for the period of January 7th 2017 to May 29th 2017. A non-probability, purposive sample, of (120) high school students, is selected. The sample is comprised of (12) students from 7th grade, (26) students from 8 th grade, (14) students from 9th grade, (3
Zinc sulfide (ZnS) thin films were deposited on glass substrates using pulsed laser deposition technique. The laser used is the Q-switched Nd: YAG laser with 1064nm wavelength and 1Hz pulse repetition rate and varying laser energy 700mJ-1000mJ with 25 pulse. The substrate temperature was kept constant at 100°C. The structural, morphological and optical properties of ZnS thin films were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscope (AFM) and UV-VIS spectrophotometer.
In this study the thermal conductivity of the epoxy composites were characterized as function of volume fraction, particle size of fillers and the time of immersion(30,60,90)days in water .Composites plates were prepared by incorporating (bi-directional) (0º-90º) glass fiber and silicon carbide (SiC) particles of (0.1,0.5,1)mm as particle size at (10%,20%,30%,40%) percent volume in epoxy matrix.
The composites shows slightly increase of the thermal conductivity with increasing volume fraction, particle size and increase with increasing the days of immersion in water. The maximum thermal conductivity (0.51W/m.K) was obtained before the immersion in water at 90 days for epoxy reinforcement by bi-directional glass fiber and SiC particl
Abstract:In this research we prepared nanofibers by electrospinning from poly (Vinyl Alcohol) / TiO2. The spectrum of the solution (Emission) was studied at 772 nm. Several process parameter were Investigated as concentration of PVA, the effect of distance from nozzle tip to the grounded collector (gap distance), and final the effect of high voltage. We find the optimum condition to prepare a narrow nanofibers is at concentration of PVA 16gm, the fiber has 20nm diameter.
In this research we prepared nanofibers by electrospinning
from poly (Vinyl Alcohol) / TiO2. The spectrum of the solution
(Emission) was studied at 772 nm. Several process parameter were
Investigated as concentration of PVA, the effect of distance from
nozzle tip to the grounded collector (gap distance), and final the
effect of high voltage. We find the optimum condition to prepare a
narrow nanofibers is at concentration of PVA 16gm, the fiber has
20nm diameter
ABSTRACT Background: resin cement type and intraoral temperature fluctuations may affect the fracture performance of successful zirconia restorations. To fill this gap, the purpose of this study is to evaluate and compare the influence of thermocycling on fracture resistance and mode of failure of monolithic zirconia crowns luted with Rely X™ U200 and BreezeTMself-adhesive resin cements as well as imply the effect of adding 2 % of polylysine (PLS) to these cements. Materials: 64 maxillary premolars were milled out of zirconia blocks using CAD/CAM milling system. They were divided into four groups (n = 16) according to the cement type. Four different resin cements were used (RelyXTMU200, Breeze™, RelyX™ U200 with 2 % PLS
... Show MoreThe cement slurry is a mixture of cement, water and additives which is established at the surface for injecting inside hole. The compressive strength is considered the most important properties of slurry for testing the slurry reliability and is the ability of slurry to resist deformation and formation fluids. Compressive strength is governed by the sort of raw materials that include additives, cement structure, and exposure circumstances. In this work, we use micro silica like pozzolanic materials. Silica fume is very fine noncrystalline substantial. Silica fume can be utilized like material for supplemental cementations for increasing the compressive strength and durability of cement. Silica fume has very fine particles size less
... Show MoreBackground: The insertion torque (IT) values and implant stability quotient (ISQ) values are the measurements most used to assess primary implant stability. This study aimed to assess the relationship between ISQ values and IT. Materials and methods: This study included 24 patients with a mean (SD) age of 47.9 (13.64) years (range 25-75 years). The patients received 42 dental implants (DI), 33 in the mandible and 9 in the maxilla. The DI were installed using the motorized method with 35 Ncm torque, When DI could not be inserted to the requisite depth by the motorized method, a hand ratchet was used and the IT was recorded as ˃ 35 Ncm. Implant stability was measured utilizing Osstell® ISQ. The secondary stability was measured after 16
... Show MoreAbstract
This paper represents a study of the effect of the soil type, the drilling parameters and the drilling tool properties on the dynamic vibrational behavior of the drilling rig and its assessment in the drilling system. So first, an experimental drilling rig was designed and constructed to embrace the numerical work.
The experimental work included implementation of the drill-string in different types of soil with different properties according to the difference in the grains size, at different rotational speeds (RPM), and different weights on bit (WOB) (Thrust force), in a way that allows establishing the charts that correlate the vibration acceleration, the rate of penetration (ROP), and the power
... Show More