Aim: surface modification of titanium using fiber laser 1064 nm to enhance the bond strength to resin cement. Material and Methods: thirty titanium discs of 0.6 cm x 0.3 cm (diameter and thickness respectively) were categorized after preparation into three groups (n=10) as follows: control group with no surface treatment and two test groups were treated with fiber laser after estimation the appropriate parameters in the pilot study which are 81 ns pulse duration, 30,000 Hz frequency, 50 µm spot size and 10,000 mm/s scanning speed and different average power values (10 W and 20 W) depending on the tested group. Titanium discs surface characterization was performed by scanning electron microscope (SEM), and surface roughness tester. Following these tests, resin cement application to titanium discs was performed. Shear bond strength (SBS) values were determined by universal testing machine. ANOVA and Tukey HSD tests were used for analyzing of data (α = 0.05).Results: Higher average surface roughness (Ra) value was observed in (10 W) group followed by (20 W) group and the lowest surface roughness value was in the control group, additionally lowest SBS value was obtained from the control group and the highest SBS value was obtained from (20 W) group followed by (10 W) group. Conclusion: bond strength between titanium and resin cement can be significantly enhanced by using fiber laser as a surface treatment. Average power of fiber laser is essential parameter in enhancing the roughness of titanium surface and bonding to resin cement.
There is a set of economic factors that affect the rationalization of decisions on unexploited resources within the economic unit and here determines the problem of the search for the question of what economic factors cause the emergence of asymmetric costs, and aims to identify these factors in the costs of adjustment to resources, change in The size of the activity of the economic unit, the general trend of sales change in the previous period, and the economic level of the country. Rh measure the impact of these factors on economic unity, and taking into consideration the impact when formulating decisions.
In this paper, simulation study of the frequency shift of photonic bandgaps due to refractive index scaling using liquids filled hollow-core photonic crystal fibers is presented. Different liquids (distilled water, n-hexane, methanol, ethanol and acetone) are used to fill the cladding of 2 types of hollow core photonic crystal fibers (HC19-1060, HC7-1060). These liquids are used to change the effective index scaling and index contrast of the cladding. The effect of increasing temperature of the liquid (20-100 0C for water and 20-70 0C for other liquids ) infiltrated hollow core fiber on the bandgap width and transmission properties has been computed. The maximum photonic bandgap width at 0.0243 has appeared with filling HC7-1060 PCF with
... Show MoreMode filtering technique is one of the most desired techniques in optical fiber communication systems, especially for multiple input multiple output (MIMO) coherent optical communications that have mode-dependent losses in communication channels. In this work, a special type of optical fiber sensing head was used, where it utilizes DCF13 that is made by Thorlabs and has two numerical apertures (NA’s). One is for core and 1st cladding region, while the 2nd relates the 1st cladding to the 2nd cladding. Etching process using 40 % hydro-fluoric (HF) acid was performed on the DCF13 with variable time in minutes. Investigation of the correlation between the degree of etching and the re
Abstract: In this work we demonstrate and investigate the optical pulse propagation in a photonic band gap fiber Bragg grating (FBG). The light propagates in opposite direction in FBG is explained and discussed by a Coupled Mode Theory (CMT). The photonic band gap (stop band gap) is created by fabricated, a Bragg grating in optical fiber. The results show the pulse spectrum falls entirely within the stop band gap, the entire pulse is reflected by the grating, while when the pulse spectrum is outside the stop band gap the pulses will transmitted through the grating. The group velocity (VG) becomes zero at the edges of the stop band and group velocity dispersion β2 is anomalous on the shorter side of stop band gap whereas β2 for uniform fi
... Show MoreThis paper reports a fiber Bragg grating (FBG) as a biosensor. The FBGs were etched using a chemical agent,namely,hydrofluoric acid (HF). This implies the removal of some part of the cladding layer. Consequently, the evanescent field propagating out of the core will be closer to the environment and become more sensitive to the change in the surrounding. The proposed FBG sensor was utilized to detect toxic heavy metal ions aqueous medium namely, copper ions (Cu2+). Two FBG sensors were etched with 20 and 40 μm diameters and fabricated. The sensors were studied towards Cu2+ with different concentrations using wavelength shift as a result of the interaction between the evanescent field and copper ions. The FBG sensors showed
... Show MoreThere is a correlation between the occurrence of anxiety and the production of inflammatory mediators, and red ginger rhizome is a well-known herbal product with a high content of phenolic and flavonoid compounds that can be used as anti-inflammatories and antioxidants. The aim of study to evaluate the effect of red ginger as antianxiety in mice (Mus musculus) BALB/c strain by measuring levels of TNF-α, IL-6 and IL-10. Anxiety model mice were carried out by giving treatment with the Forced Swimming Test (FST) for 7 days then assessed by carrying out the Elevated Plus Maze for Mice (EPM) test for one day. After the treatment, the anxiety mice model was made, followed by administration of red ginger ethanol extract therapy for 14 days.
... Show MoreIn present work an investigation for precise hole drilling via continuous wave (CW) CO2 laser at 150 W maximum output power and wavelength 10.6 μm was achieved with the assistance of computerized numerical controlled (CNC) machine and assist gases. The drilling process was done for thin sheets (0.1 – 0.3 mm) of two types of metals; stainless steel (sst) 321H, steel 33 (st). Changing light and process parameters such as laser power, exposure time and gas pressure was important for getting the optimum results. The obtained results were supported with computational results using the COMSOL 3.5a software code.
The interlaminar fracture toughness of polymer blends reinforced by glass fiber has
been investigated. Epoxy (EP), unsaturated polyester(UPE), polystyrene (PS),
polyurethane (PU) and their blends with different ratios (10%PS/90%EP),
(20%PS/80%EP), (20%PU/80%EP) and (20%PU/80%UPE) were chosen as a matrices A
sheet of composites were prepared using hand lay -up method, these sheet were cut as the
double cantilever beam (DCB) specimen to determine interlaminar fracture toughness of
these composites .Its found that, blending of EP,UPE with 20% of PU will improve the
interlaminar fracture toughness ,but the adding of 10% PS, 20%PS to EP will decrease
the interlaminar toughness of these composites.
The result of a developed mathematical model for predicting the design
parameters of the fiber Raman amplifier (FRA) are demonstrated. The amplification
parameters are tested at different pump power with different fiber length. Recently,
the FRA employed in optical communication system to increase the repeater distance
as will as the capacity of the communication systems. The output results show, that
high Raman gain can be achieved by high pumping power, long effective area that
need to be small for high Raman gain. High-stimulated Raman gain coefficient is
recommended for high Raman amplifier gain, the low attenuation of the pump and the
transmitted signal in the fiber lead to high Raman gain.
Polymeric hollow fiber membrane is produced by a physical process called wet or dry/wet phase inversion; a technique includes many steps and depends on different factors (starting from selecting materials, end with post-treatment of hollow fiber membrane locally manufactured). This review highlights the most significant factors that affect and control the characterization and structure of ultrafiltration hollow fiber membranes used in different applications. Three different types of polymers (polysulfone PSF, polyethersulfone PES or polyvinyl chloride PVC) were considered to study morphology change and structure of hollow fiber membranes in this review. These hollow fiber membranes were manufactured with different proce
... Show More