: In modern optical communication system, noise rejection multiple access interference (MAI) must be rejected in dense access network (DAN). This paper will study the dual optical band pass and notch filters. They will be extracted with tunable FWHM using 10cm (PMF) with different cladding diameters formed with etching 125μm PMF after immersing it with 40% of hydrofluoric acid (HF). This fiber acts as assessing fiber to perform Sagnac interferometer with splicing regions that placed 12cm (SMF) for performing hybrid Sagnac interferometer that consists of Mach-Zehnder instead of Sagnac loop which is illuminated by using laser source with centroid wavelength of 1546.7nm and FWHM of 286 pm or 9 ns in the time domain. . Firstly, Three PMF with the same lengths but with different etching durations (10, 20 and 30) min. Secondly, each of these PMFs with different etching durations will affected under tunable stressing forces (10, 20, 50 and100) g applying on cross sectional area and two weights of (5, 10, 25 and 50) g putting on both micro splicing area separately. The minimum FWHM of dual optical band pass and notch filters at specific etching time with mechanical forces getting the best values equal to 123pm and 90pm, respectively. The study found that the HSI interferometer can be used efficiently as a narrow notch filter in integrated optical communication systems since it has high sensitivity in the pm range.
The paper presents a neural synchronization into intensive study in order to address challenges preventing from adopting it as an alternative key exchange algorithm. The results obtained from the implementation of neural synchronization with this proposed system address two challenges: namely the verification of establishing the synchronization between the two neural networks, and the public initiation of the input vector for each party. Solutions are presented and mathematical model is developed and presented, and as this proposed system focuses on stream cipher; a system of LFSRs (linear feedback shift registers) has been used with a balanced memory to generate the key. The initializations of these LFSRs are neural weights after achiev
... Show MoreThe Artificial Neural Network methodology is a very important & new subjects that build's the models for Analyzing, Data Evaluation, Forecasting & Controlling without depending on an old model or classic statistic method that describe the behavior of statistic phenomenon, the methodology works by simulating the data to reach a robust optimum model that represent the statistic phenomenon & we can use the model in any time & states, we used the Box-Jenkins (ARMAX) approach for comparing, in this paper depends on the received power to build a robust model for forecasting, analyzing & controlling in the sod power, the received power come from
... Show MoreThe present work includes design, construction and operates of a prototype solar absorption refrigeration system, using methanol as a refrigerant to avoid any refrigerant that cause global warming and greenhouse effect. Flat plate collector was used because it’s easy, ninexpensive and efficient. Many test runs (more than 50) were carried out on the system from May to October, 2013; the main results were taken between the period of July 15, 2013 to August 15, 2013 to find the maximum C.O.P, cooling, temperature and pressure of the system. The system demonstrates a maximum generator temperature of 93.5 oC, on July 18, 2013 at 2:30 pm, and the average mean generator temperature Tgavr was 74.7 °C, for this period. The maximum pressure Pg
... Show MoreFerritin is a key organizer of protected deregulation, particularly below risky hyperferritinemia, by straight immune-suppressive and pro-inflammatory things. , We conclude that there is a significant association between levels of ferritin and the harshness of COVID-19. In this paper we introduce a semi- parametric method for prediction by making a combination between NN and regression models. So, two methodologies are adopted, Neural Network (NN) and regression model in design the model; the data were collected from مستشفى دار التمريض الخاص for period 11/7/2021- 23/7/2021, we have 100 person, With COVID 12 Female & 38 Male out of 50, while 26 Female & 24 Male non COVID out of 50. The input variables of the NN m
... Show MoreMedical image segmentation is one of the most actively studied fields in the past few decades, as the development of modern imaging modalities such as magnetic resonance imaging (MRI) and computed tomography (CT), physicians and technicians nowadays have to process the increasing number and size of medical images. Therefore, efficient and accurate computational segmentation algorithms become necessary to extract the desired information from these large data sets. Moreover, sophisticated segmentation algorithms can help the physicians delineate better the anatomical structures presented in the input images, enhance the accuracy of medical diagnosis and facilitate the best treatment planning. Many of the proposed algorithms could perform w
... Show MoreThe aim of this paper is to determine the feasibility of using fluorometric methods as an indicator for quality and contamination of milk with E.coli bacteria, and selection the suitable wavelength to be used with laser induced auto fluorescence. Three groups of milk samples were used in this study: Fresh pasteurized milk samples, milk samples containing different concentration of E.coli bacteria which were added artificially, and milk samples that were kept in refrigerator for 3-5 days. Thirteen excitation wavelengths were used to get the emission spectra for all milk samples using spectroflourometer .The results showed that the emission spectra at 275nm excitation wavelength gave a good differentiation between these three groups.
... Show MoreIn this paper two main stages for image classification has been presented. Training stage consists of collecting images of interest, and apply BOVW on these images (features extraction and description using SIFT, and vocabulary generation), while testing stage classifies a new unlabeled image using nearest neighbor classification method for features descriptor. Supervised bag of visual words gives good result that are present clearly in the experimental part where unlabeled images are classified although small number of images are used in the training process.
Drag reduction (DR) techniques are used to improve the flow by spare the flow energy. The applications of DR are conduits in oil pipelines, oil well operations and flood water disposal, many techniques for drag reduction are used. One of these techniques is microbubbles. In this work, reduce of drag percent occurs by using a small bubbles of air pumped in the fluid transported. Gasoil is used as liquid transporting in the pipelines and air pumped as microbubbles. This study shows that the maximum value of drag reduction is 25.11%.
Due to the vast using of digital images and the fast evolution in computer science and especially the using of images in the social network.This lead to focus on securing these images and protect it against attackers, many techniques are proposed to achieve this goal. In this paper we proposed a new chaotic method to enhance AES (Advanced Encryption Standards) by eliminating Mix-Columns transformation to reduce time consuming and using palmprint biometric and Lorenz chaotic system to enhance authentication and security of the image, by using chaotic system that adds more sensitivity to the encryption system and authentication for the system.