: In modern optical communication system, noise rejection multiple access interference (MAI) must be rejected in dense access network (DAN). This paper will study the dual optical band pass and notch filters. They will be extracted with tunable FWHM using 10cm (PMF) with different cladding diameters formed with etching 125μm PMF after immersing it with 40% of hydrofluoric acid (HF). This fiber acts as assessing fiber to perform Sagnac interferometer with splicing regions that placed 12cm (SMF) for performing hybrid Sagnac interferometer that consists of Mach-Zehnder instead of Sagnac loop which is illuminated by using laser source with centroid wavelength of 1546.7nm and FWHM of 286 pm or 9 ns in the time domain. . Firstly, Three PMF with the same lengths but with different etching durations (10, 20 and 30) min. Secondly, each of these PMFs with different etching durations will affected under tunable stressing forces (10, 20, 50 and100) g applying on cross sectional area and two weights of (5, 10, 25 and 50) g putting on both micro splicing area separately. The minimum FWHM of dual optical band pass and notch filters at specific etching time with mechanical forces getting the best values equal to 123pm and 90pm, respectively. The study found that the HSI interferometer can be used efficiently as a narrow notch filter in integrated optical communication systems since it has high sensitivity in the pm range.
Polyaromatic hydrocarbons (PAHs) are a group of aromatic compounds that contain at least two rings. These compounds are found naturally in petroleum products and are considered the most prevalent pollutants in the environment. The lack of microorganism capable of degrading some PAHs led to their accumulation in the environment which usually causes major health problems as many of these compounds are known carcinogens. Xanthene is one of the small PAHs which has three rings. Many xanthene derivatives are useful dyes that are used for dyeing wood and cosmetic articles. However, several studies have illustrated that these compounds have toxic and carcinogenic effects. The first step of the bacterial degradation of xanthene is conducted by d
... Show MoreIncremental forming is a flexible sheet metal forming process which is performed by utilizing simple tools to locally deform a sheet of metal along a predefined tool path without using of dies. This work presents the single point incremental forming process for producing pyramid geometry and studies the effect of tool geometry, tool diameter, and spindle speed on the residual stresses. The residual stresses were measured by ORIONRKS 6000 test measuring instrument. This instrument was used with four angles of (0º,15º,30º, and 45º) and the average value of residual stresses was determined, the value of the residual stress in the original blanks was (10.626 MPa). The X-ray diffraction technology was used to measure the residual stresses
... Show MoreIn this work, functionally graded materials were synthesized by centrifugal technique at different
volume fractions 0.5, 1, 1.5, and 2% Vf with a rotation speed of 1200 rpm and a constant rotation time, T
= 6 min . The mechanical properties were characterized to study the graded and non-graded nanocomposites
and the pure epoxy material. The mechanical tests showed that graded and non-graded added alumina
(Al2O3) nanoparticles enhanced the effect more than pure epoxy. The maximum difference in impact strength
occurred at (FGM), which was loaded from the rich side of the nano-alumina where the maximum value was
at 1% Vf by 133.33% of the sample epoxy side. The flexural strength and Young modulus of the fu
This contribution investigates the impact of adding transition metal of Ti to CeOy samples at various concentrations referring to 0, 15.84, 24.46, 34.46, 36.23, 38.46, 45.38% and pure TiOy, correspondingly. The samples were fabricated by the magnetron sputtering technique. X-ray diffraction (XRD) configurations demonstrate the presence of α-Ce2O3 and Ce2O3 phases with increased Ti contents in the systems. X-ray photoelectron spectroscopy (XPS) experimentation confirms the purity of the S1-sample (CeO2) and the purity of the S8-sample (TiO2). Further XPS analysis reveals that Ti incorporation in the doped systems functions as a reducing agent because of the existence of α-Ce2O3 and Ce2O3 phases. Moreover, based on UV–vis spectroscopy res
... Show MoreCerium oxide CeO2, or ceria, has gained increasing interest owing to its excellent catalytic applications. Under the framework of density functional theory (DFT), this contribution demonstrates the effect that introducing the element nickel (Ni) into the ceria lattice has on its electronic, structural, and optical characteristics. Electronic density of states (DOSs) analysis shows that Ni integration leads to a shrinkage of Ce 4f states and improvement of Ni 3d states in the bottom of the conduction band. Furthermore, the calculated optical absorption spectra of an Ni-doped CeO2 system shifts towards longer visible light and infrared regions. Results indicate that Ni-doping a CeO2 system would result in a decrease of the band gap. Finally,
... Show MoreCuInSe2(CIS) thin films have been prepared by use vacuum thermal evaporation technique, of thickness750 nm with rate of deposition 1.8±0.1 nm/sec on glass substrate at room temperature and pressure (10-5) mbar. Heat treatment has been carried out in the range (400-600) K for all samples. The optical properties of the CIS thin films are been studied such as (absorption coefficient, refractive index, extinction coefficient, real and imaginary dielectric constant) by determined using Measurement absorption and transmission spectra. Results showed that through the optical constants we can make to control it are wide applications as an optoelectronic devices and photovoltaic applications.
CuInSe2 (CIS)thin films have been prepared by use vacuum thermal evaporation technique, of 750 nm thickness, with rate of deposition 1.8±0.1 nm/sec on glass substrate at room temperature and pressure (10-5) mbar. Heat treatment has been carried out in the range (400-600) K for all samples. The optical properties of the CIS thin films are been studied such as (absorption coefficient, refractive index, extinction coefficient, real and imaginary dielectric constant)by determined using Measurement absorption and transmission spectra. Results showed that through the optical constants we can made to control it is wide applications as an optoelectronic devices and photovoltaic applications.
The study effect irradiation on optical properties of film (PVA: CuCL2) prepared by casting method, with thickness of (30±1) μm. And used Cs137 to obtained Gamma ray with energy (662)keV and time irradiation(5,6 and 7) weeks and affectivity (4.3) ci. The spectra absorbance and transmittance register in range (300-1100) nm .
Results show that the optical band gap for (PVA: CuCl2) decreasing after irradiation with gamma ray from (3.2,3.1,3 and 2.7)eV, urbach energy values increase with the increasing time radiation. And the absorption constants (α,k,n,) and the optical conductivity are changing after irradiated with gamma ray .
An optical video communication system is designed and constructed using pulse frequency modulation (PFM) technique. In this work PFM pulses are generated at the transmitter using voltage control oscillator (VCO) of width 50 ns for each pulse. Double frequency, equal width and narrow pulses are produced in the receiver be for demodulation. The use of the frequency doubling technique in such a system results in a narrow transmission bandwidth (25 ns) and high receiver sensitivity.