Abstract: The development of highly sensitive sensors has become an efficient field of research. In this work, an ArF Excimer laser of 193 nm with a maximum pulse energy of 275 mJ, 15 ns pulse duration and a repetition rate of 1 Hz is utilized to form a Laser Induced Periodic Surface Structures (LIPSS) of three different morphologies (nanochains, contours, grooves) on surface of CR39 polymer at a fluence range above the ablation threshold (250 mJ/cm2). The laser ablated polymer surface is then Surface Enhanced Raman Scattering (SERS) activated by deposition of a gold layer of 30 nm thickness. The capability of the produced substrate for surface enhanced Raman scattering is evaluated through thiophenol as an analyte molecule. It is observed that the Laser Induced Periodic Surface Structures of grooves like nanostructures coated with 30 nm gold layer gives a best enhancement factor in the range from 0.9*108 to 2*108 which is suitable for a single- molecule sensitivity.
In this study, the effect of ceramic coating on the performance and gases emission on diesel engine was investigated. A four-stroke, direct injected, single cylinder, diesel engine was tested at constant speed and at different load conditions without coating. Then, the inlet and exhaust valves faces were coated by about 500µm with ceramic materials. Ceramic layers were made of YttriaStabilized Zirconia (YSZ), and NiCrAl as a bond coat. The coating technique adapted in this work is the flame spray method. The engine with valves ceramiccoated research was tested for the same operation conditions of the engine (without coating). The results indicate a reduction in both fuel consumption by about 7.6% and particulate emissions by about (13
... Show MoreA numerical computation for determination transmission coefficient and resonant tunneling energies of multibarriers heterostructure has been investigated. Also, we have considered GaN/Al0.3Ga0.7N superlattice system to estimate the probability of resonance at specific energy values, which are less than the potential barrier height. The transmission coefficient is determined by using the transfer matrix method and accordingly the resonant energies are obtained from the T(E) relation. The effects of both well width and number of barriers (N) are observed and discussed. The numbers of resonant tunneling peaks are generally increasing and they become sharper with the increasing of N. The resonant tunneling levels are sh
... Show MoreThe substrate's nature plays an important role in the characteristics of semiconductor films because of the thermal and lattice mismatching between the film and the substrate. In this study, tin sulfide (SnS) nanostructured thin films were grown on different substrates (polyester, glass, and silicon) using a simple and low-cost chemical bath deposition technique. The structural, morphological, and optical properties of the grown thin films were investigated using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and ultraviolet-visible-near infrared (UV-Vis-NIR) spectroscopy. The XRD and FESEM results of the prepared films revealed that each film is polycrystalline and exhibits both orthorhombic and cubic stru
... Show MoreA numerical computation for determination transmission coefficient and resonant tunneling energies of multibarriers heterostructure has been investigated. Also, we have considered GaN/Al0.3Ga0.7N superlattice system to estimate the probability of resonance at specific energy values, which are less than the potential barrier height. The transmission coefficient is determined by using the transfer matrix method and accordingly the resonant energies are obtained from the T(E) relation. The effects of both well width and number of barriers (N) are observed and discussed. The numbers of resonant tunneling peaks are generally increasing and they become sharper with the increasing of N. The resonant tunneling levels are shifted inside the well by
... Show MoreNew evidence on nanotechnology has shown interest in the creation and assessment of nanoparticles for cancer treatment. Worldwide, a wide range of tumor-targeted approaches are being developed to reduce side effects and boost the efficacy of cancer therapy. One strategy that shows promise is the use of metallic nanoparticles to increase the radio sensitization of the cancer cells while reducing or maintaining the normal tissue complication probability during radiation therapy. In this study, atmospheric plasma was created using argon gas to create Au NPs using the plasma jet scheme, and their ability to induce apoptosis as an anticancer mechanism was tested. Aqueous gold tetrachloride salts (HAuCl4·3H2O) ere used to produce gold nanopartic
... Show MoreThis article showcases the development and utilization of a side-polished fiber optic sensor that can identify altered refractive index levels within a glucose solution through the investigation of the surface Plasmon resonance (SPR) effect. The aim was to enhance efficiency by means of the placement of a 50 nm-thick layer of gold at the D-shape fiber sensing area. The detector was fabricated by utilizing a silica optical fiber (SOF), which underwent a cladding stripping process that resulted in three distinct lengths, followed by a polishing method to remove a portion of the fiber diameter and produce a cross-sectional D-shape. During experimentation with glucose solution, the side-polished fiber optic sensor revealed an adept detection
... Show MoreStudy the effect of additives polymer polyvinyl alcohol (PVA) after solving in water by concentration 10% since represent a standard of PVA solution with added to cement – silica composite of ratio (1:2) with 5%, 10%, 15%, 20%, and 25% respectively to the standard quantity of water which using as a mortar of building. The results are demonstrate increasing on compression resistance with increase of PVA solution until 20%, and decreasing of thermal conductivity which represent a composite are increasing in thermal insulating. The results were recommended decreasing of water absorption with increase of PVA solution ratio as illustrated in this study.
Ge-Au infrared photoconductive detection was prepared from germanium single crystal which were doped with different gold concentration using thermal evaporation. The spectral resonsivity (Rλ), spectral detectivity (D*) were determined as function of wavelength, also the resistance, conductivity in dark and with illumination to infrared radiation, the gain and relative photo response have been measured with different gold concentration. Remarkable improvements in the photoresponse gain were observed for the highest resistance specimen at the expense of spectral detectivity values.
In this paper, investigates the biosynthesis of gold nanoparticles (AuNPs) by biochemical method using Myrtus communis leaves extract as reducing agent and Chloroauric acid (HAuCl4) as precursors. X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and FTIR were used in addition to UV-visible spectroscopy (UV) in order to characterize the AuNPs. The biosynthesized AuNPs exhibited inhibitory effects on alpha amylase and alkaline phosphatase in sera of patient with type 2 Diabetes Miletus and the sera of healthy control subjects; the inhibition percentage with alpha amylase was 72 % and 45 % for patient and control group respectively. Oral consent obtained from the most of patients and healthy subjects before them being under
... Show More