: The Aluminium (Al) material emerged as a plasmonic material in the wavelength ranges from the ultraviolet to the visible bands in different on-chip plasmonic applications. In this paper, we demonstrate the effect of using Al on the electromagnetic (EM) field distribution of a compact hybrid plasmonic waveguide (HPW) acting as a polarization rotator. We compare the performance of Al with other familiar metals that are widely used as plasmonic materials, which are Silver (Ag) and Gold (Au). Furthermore, we study the effect of reducing the geometrical dimensions of the used materials on the EM field distributions inside the HPW and, consequently, on the efficiency of the polarization rotation. We perform the study based on the Finite Element Method (FEM) using COMSOL software at an operation wavelength of 700 nm. This paper verifies that the Al could be used as an efficient plasmonic material in integrated single-photon sources for quantum key distribution systems.
This study included the isolation and identification of Aspergillus flavus isolates associated with imported American rice grains and local corn grains which collected from local markets, using UV light with 365 nm wave length and different media (PDA, YEA, COA, and CDA ). One hundred and seven fungal isolates were identified in rice and 147 isolates in corn.4 genera and 7 species were associated with grains, the genera were Aspergillus ,Fusarium ,Neurospora ,Penicillium . Aspergillus was dominant with occurrence of 0.47% and frequency of 11.75% in rice grains whereas in corn grains the genus Neurospora was dominant with occurrence of 1.09% and frequency 27.25% ,results revealed that 20 isolates out of 50 A. flavus isolates were able
... Show MoreChemical bath deposition was used to synthesize ZnO nanorods (NRs) on glass and fluorine_doped tin oxide (FTO) substrates. X-ray diffraction was performed to examine the crystallinity of ZnO nanorod. Results showed that ZnO NRs had a wurtzite crystal structure. Field emission scanning electron microscopy images showed that glass sample had rod-like structure distribution with (50 nm) diameter and average length of approximately (700 nm), whereas the FTO-coated glass sample had 25 nm diameter and average length of approximately 950 nm. The direct optical transition band gaps of the glass and FTO_coated glass samples were( 4 and 4.43 eV), respectively. The structural and optical properties of the synthesized ZnO p
... Show MoreA field experiment was carried out at University of Baghdad, College of Agricultural Engineering Sciences during fall season of 2020 and spring season of 2021. This study was aimed evaluate the effect of the organic fertilizer and boron foliar on the yield of potatoes for processing. The factorial experiment (5*4) within RCBD and three replicates. The organic fertilizer as palm peat at four levels (0, 12, 24 and 36 ton. ha-1) in addition to the chemical fertilizer recommendation treatment. Boron at four Concentrations 0, 100, 150 and 200 mg. L-1 . The results revealed significant different among application of organic fertilizer at the level of 24 ton. ha-1 and the foliar application of boron at a concentration of 100 mg. L-1 in the
... Show MoreForty five wound specimens were collected from patients suffering from wound infections and taken from various hospitals in Ibb city, Yemen. The study was to determine synergic antibacterial activity of between mountain honey and Argemone mexicana plant. Isolation, identification of bacterial isolates and antibiotic sensitivity test were done. Agar-disc and agar-well diffusion method were carried to determine antibacterial activity of honey, Argemone mexicana plant and a mixture of them against bacterial isolates. Out of 45 specimens, 29 (64.4%) gave positive cultures. Staphylococcus aureus was the predominant bacterial pathogens with percentage (72.4%) followed by Pseudomonas aeruginosa (17.2%) and Staphylococcus epidermidis (10.4%).
... Show MoreThis study was undertaken to diagnose routine settling problems within a third-party oil and gas companies’ Mono-Ethylene Glycol (MEG) regeneration system. Two primary issues were identified including; a) low particle size (<40 μm) resulting in poor settlement within high viscosity MEG solution and b) exposure to hydrocarbon condensate causing modification of particle surface properties through oil-wetting of the particle surface. Analysis of oil-wetted quartz and iron carbonate (FeCO₃) settlement behavior found a greater tendency to remain suspended in the solution and be removed in the rich MEG effluent stream or to strongly float and accumulate at the liquid-vapor interface in comparison to naturally water-wetted particles. As su
... Show MoreThis work aim to prepare Ag/R6G/PMMA nanocomposite thin
films by In-situ plasma polymerization and study the changes in the
optical properties of fluorophore due to the presence of Ag
nanoparticles structures in the vicinity of the R6G laser dye. The
concentrations of R6G dye/MMA used are: 10-4M solutions were
prepared by dissolving the required quantity of the R6G dye in
MMAMonomer. Then Silver nanoparticles with 50 average particles
size were mixed with MMAmonomer with concentration of 0.3, 0.5,
0.7wt% to get R6G silver/MMA in liquid phase. The films were
deposited on glass substrates by dielectric barrier discharge plasma
jet. The Ag/R6G/PMMA nanocomposite thin films were
characterization by UV-Visible
Two different composite materials were prepared by stir casting method of AA 6061 alloy as a matrix reinforced with two addition different ceramic materials Al2O3 and B4C of grain size 20 µm by 2.5, 5, 7.5 and10% in weight. The composite material with aluminum alloy as a matrix possesses a unique mechanical properties such as: high specific strength and hardness, low density, and high resistance to corrosion and friction wear. This composite is widely used in automotive parts space and marine applications.
Pin-on-disc technique was used to calculate the wear rate for each addition of Al2O3 and B4C particles. Rockwell hardness test and
... Show MoreIn this work, the plasma parameters (electron temperature and
electron density) were determined by optical emission spectroscopy
(OES) produced by the RF magnetron Zn plasma produced by
oxygen and argon at different working pressure. The spectrum was
recorded by spectrometer supplied with CCD camera, computer and
NIST standard of neutral and ionic lines of Zn, argon and oxygen.
The effects of pressure on plasma parameters were studied and a
comparison between the two gasses was made.
The purpose of this work is to study the classification and construction of (k,3)-arcs in the projective plane PG(2,7). We found that there are two (5,3)-arcs, four (6,3)-arcs, six (7,3)arcs, six (8,3)-arcs, seven (9,3)-arcs, six (10,3)-arcs and six (11,3)-arcs. All of these arcs are incomplete. The number of distinct (12,3)-arcs are six, two of them are complete. There are four distinct (13,3)-arcs, two of them are complete and one (14,3)-arc which is incomplete. There exists one complete (15,3)-arc.